
-AiG.2 869 RULE-MASED CIRCUIT OPTIMIZATION FOR CNOS VLSI(U) 11?
ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAS F LA1
JUL 87 UILU-ENG-87-2244 N88@i4-84-C-Gi49

UNCLASSIFIED F/G 9/1 NL.

I Ihh.hIhII|
EhhEBhhBhEBhhE
EhhEIhIhhIhhEE
EElhlhlhhhhlhE
IIIl-EIIIE-ElI
lllll"llllI"'

1111 . L ' 132 '

III Imi
'II1 III11.8l

.11.25=

MICROCOPY RESOLUTION TEST CHART

* .A"..'.A A ' "% "'.t% A t* "X"'3 t" 4'.w 1 ~' "- ' ~ . ?. % . . - : ' .p t -:! z

%
%*

-* - - -

July 1987 UILU-ENG-87-2244

COORDINATED SCIENCE LABORATORY
CoUege of Engireering

AD-A 182 869

RULE-BASED
CIRCUIT
OPT IMIZ AT ION
FOR CMOS VLSI

Feipei Lai

...... CTE v..AUG 03 A987B

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. •87 7 31 061

UNCLASSIFIED
SECURITY CLASSIFICATION OF

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABIUTY OF REPORT

Approved for public release;
2b. DECLASSIFICATIONi D OWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-87-2244

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (if applicable) Semiconductor Research Corporation
University of Illinois N/A Office of Naval Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

i101 W. Springfield Avenue ONR: SRC:
Urbana, IL 61801 Arlington, VA Research Triangle Park

22217 NC 27709
Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Semiconductor (if applicable) SRC: 86-12-109
Research Corp. & Join Serices
Electronics Program (JSP)FP JSEP: N00014-84--0149
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
See block 7b. ELEMENT NO. NO. NO. ACCESSION NO.

11, TITLE (Include Security Classification)

RULE-BASED CIRCUIT OPTIMIZATION FOR CMOS VLSI

12. PERSONAL AUTHOR(S)
Lai, Feipei

*13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) IiS. PAGE COUNT
Technical FROM TO July 1987 117

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if secessary and identify by block number)
FIELD GROUP SUB-GROUP circuit optimization, a4OS, VLSI, iJADE, .-

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

A closed-loop design system. iJADE, has been developed in Franz LISP. iJADE is a hierarchical
CMOS VLSI circuit optimizer. Using a switch-level timing simulator and a timing analyzer, the
program pinpoints the critical paths. The path delay reduction algorithms and a rule-based expert
system are then applied to adjust transistor sizes such that the speed of the circuit can be improved
while keeping constraints satisfied. iJADE is also capable of detecting and correcting the timing
errors of synchronous circuits. The circuit is described in SPICE-like input format and then parti-
tioned into blocks. Delays are computed on a block-by-block basis hierarchically, using a simple
model based on input rise time, block type. and output load.

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MIUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. E3 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE pncude Area Code) 22c. OFFICE SYMBOL

00 FORM 1473,94 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

* UNCLASSIFIED

UNCLASSIFIED
'ECURITY CLAlSIIICATIOW0 OF THIS PA6

19. Continued

In synchronous VLSI circuits, the detection and correction of timing errors due to clock skew
requires accurate simulation of clock waveforms in addition to data path waveforms. To detect
timing errors the hold time and the set-up time of each latch are checked with realistic signal
waveforms. To correct the timing errors. two procedures are used: (1) resizing transistors in clock
paths and (2) resizing transistors in critical paths and shortest signal paths. Experimental results
from CMOS circuits including a 4-bit ALU show that iJADE-optimized circuits perform competi-
tively or even better in terms of glitch avoidance, propagation delay time, and chip area. The useof this program can significantly reduce the design time over the conventional manual approach.

, INCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE

RULE-BASED CIRCUIT OPTIMIZATION
FOR CMOS VLSI

BY

FEIPEI LAI

M...B.S.. National Taiwan University. 1980

M.S.. University of Illinois at Urbana-Champaign. 1984

U THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign. 1987

Urbana. Illinois

"V-

RULE-BASED CIRCUIT OPTIMIZATION
FOR CMOS VLSI

Feipei Lai. Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign. 1987

A closed-loop design system OiADE has been developed in Franz LISP. iJADE is a

hierarchical CMOS VLSI circuit optimizer. Using a switch-level timing simulator and a timing

analyzer. the program pinpoints the critical paths. The path delay reduction algorithms and a

rule-based expert system are then applied to adjust transistor sizes such that the speed of the
circuit can be improved while keeping constraints satisfied. iJADE is also capable of detecting

and correcting the timing errors of synchronous circuits. The circuit is described in SPICE-like

input format, and then partitioned into blocks. Delays are computed on a block-by-block basis

hierarchically, using a simple model based on input rise time, block type. and output load.

In synchronous VLSI circuits, the detection and correction of timing errors due to clock

skew requires accurate simulation of clock waveforms in addition to data path waveforms. To

detect timing errors the hold time and the set-up time of each latch are checked with realistic

signal waveforms. To correct the timing errors two procedures are used: (1) resizing transistors

in clock paths. and (2) resizing transistors in critical paths and shortest signal paths. Experi-

mental results from CMOS circuits including a 4-bit ALU show that iJADE-optimized circuits

perform competitively or even better in terms of glitch avoidance, propagation delay time. and

chip area. The use of this program can significantly reduce the design time over the conven-

tional manual approach.

Distribut ' n,'

.',.' ?V'lity Codes

R'OPYI . i ,-. . ,

"'T%

iv

ACKNOWLEDGEMEENTS

3 I wish to express my sincere appreciation and gratitude to Professor Timothy N. Trick.

my dissertation advisor, for his invaluable guidance and support during the course of my gra-

duate studies. Professor Chung-Laung Liu. my dejure advisor, was always there whenever I

needed help. I owe very much to his understanding, encouragement. and direction. He is both a

great teacher and a very good friend. I would also like to thank Professor Sung-Mo Kang for

his excellent technical advice. Professor Saburo Muroga and Sylvian R. Ray are appreciated for

being members of dissertation committee and their suggestions. Professor Dwight D. Hearn was

Nmy TA job supervisor helped me through a difficult year. I wish to thank Professor Vasant B.

Rao and all the members of the Circuits and Systems Group at the Coordinated Science Labora-

tory. Urbana. for many interesting discussions and helpful suggestions. Also the kindness. wis-

dorn and support from Professor Nachum Dershowitz would never be forgotten.

Finally. the dissertation would not have been done without the encouragement. patience.

and support from my family. They have always been a great source of inspiration to me. This

thesis is dedicated to all of them.

tz

-AI -

V

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION ..

2. iJADE SYSTEM IM PLEM ENTATION ... 8
2.1. Introduction ... 8
2.2. Hierarchical Data Structure and Algorithm s .. 11
2.3. Sum m ary ... 26

3. HIERARCHICAL SWITCH-LEVEL TIMING SIMULATOR .. 28
3.1. Introduction ... 28
3.2. Circuit Partitioning and Ordering .. . 29
3.3. Delay Operation .. 33
3.4. Critical Path Evaluation ... 43
3.5. Timing Analyzer... 44
3.6. Exam ples .. 45
3.7. Sum m ary ... 48

4. CM OS VLSI TIM ING OPTIM IZER .. . 52
4.1. Introduction ... 52

4.2. Optim ization 53
4.3. Rule-based Expert System .. 59
4.4. Optim ization Rules .. 63
4.5. Experim ental Results .. 68
4.6. Sum m ary ... 73

5. TIMING ERROR CORRECTOR FOR VLSI SYNCHRONOUS CIRCUITS 75
5.1. Introduction ... 75
5.2. Path Analysis .. 77
5.3. Tim ing Error Detection ... 81
5.4. Tim ing Error Correction .. 84
5.5. Experim ental Results and Sum mary 88

6. CONCLUSIONS AND FUTU RE W ORK .. . 90

APPEN DIX A. iJADE VERSION IA USER'S GUIDE ... 92
A. I. Fram e Data-base ... 93
A.2. Input Form at .. 94
A.3. Output Form at .. . 98

vi

A.4. Delay File .. 100
A.5. Technology File .. 103

REFERENCES ... 105

VITA ... I11

"Y"

Ct

V

I,.

Is

1I

CHAPT'ER 1.

INTRODUCTION

U
The speed of an integrated circuit is limited by its critical paths. When the frequency of

the clock signals or strobe signals is increased so that critical paths fail to function properly due

to insufficient time for the signal to propagate through that logic path. the performance is said

to have reached its limit regardless of how well the other logic paths can function. Therefore it

is obviously desirable to improve the speed of these logic paths until all logic paths are equally

critical or until the increase in silicon area required for the speed improvement becomes intoler-

able.

The goal of VLSI design automation is to speed up the design process without sacrificing

the quality of the implementation. A common means 6f achieving this goal is through the use

of optimizations tool. Several delay-time optimization approaches have been published (Rue

t77). [Kan 81). [Gla 84). [Lee 84). [Fis 85). [Mat 85]. [Kao 85]. Most of them deal with the delay

equation for critical paths or for single cells only. Mathematical optimization algorithms are

often used to minimize delay times. The optimization method used to determine the "best sizes

of the transistors in a chain is based on the delay model. But often *optimizationo in the

mathematical sense may bear no relationship with reality, because it might lead to a driver

with channel widths too large to be implemented on chip. A design truly optimized for delay

time is seldom practical. This is because the silicon area increases very rapidly when the

minimum delay time is approached. Furthermore any approach that neglects the loading effect

of transistors other than those in the critical paths is often misleading. This is because as the

original critical path is sped up. another path might become a new critical path whose delay is

approximately the same as the original delay.

2I

This dissertation presents a new design optimization method. The design system iJADE

combines an analytic tool (timing simulator) with a rule-based expert system. iJADE mimics

* the problem solving behavior of a human designer and deals with the dynamic design environ-

ment. First. it analyzes the circuit to be optimized and compiles the performance information.

Then based on results from analysis phase the expert system decides what actions should be

taken to adjust the sizes of the transistors. Since critical paths may change after the size

adjustments. a closed-loop evaluation and refinement of design parameters are used to handle

such dynamic situations.

The global approach to timing performance optimization should involve operations at the

.1 logic, topological and physical level of the circuit description. In particular. at the logic level, it

can modify the internal structure of the logic gates and their interconnection inside each combi-

national module [Mur 791. At the topological level, it repositions the modules. and as a conse-

quence their gates. to reduce the interconnection delay along the critical paths. At the physical

design level, it optimizes the gate sizes to improve the switching speed. In this dissertation we

will concentrate on the physical level optimization to improve circuit performance. The device

sizing strategy used here is a heuristic descent technique. The size of the device implementing

the drivers is adjusted by changing its width. which is a linear function of the channel width

w ; the device length is kept constant except for a few situations.

Given a CMOS circuit with N transistors of sizes (channel widths) z£1. X2. ". . the

following question is considered: How can the circuit's performance be optimized by adjusting

the z, s? Two figures of merit are of special interest, namely the minimum clock period (T) at

which the circuit will operate and the active chip area (A) monitored as the sum of transistor

sizes.

%

N' 3

j In Chapter 2. the algorithms and techniques of hierarchical programming and data bases

are discussed. Under the well-known structured-design methodology, a design is partitioned

into several levels of hierarchy. This partitioning helps designers focus on one particular level

of design at any given time and allows the complexity of a large system to be managed

effectively. A hierarchical design is best supported by a hierarchical simulator for determining

its functionality and performance. Currently most circuit optimization is done manually with

feedback from circuit simulation. Before layout. designers design electronic circuits tem-

porarily assuming the sizes of some circuit parameters. analyze the circuits by CAD programs.

and then modify the circuits based on the analysis. After having obtained more specific values

for circuit parameters from actual layout. designers finalize the design of the electronic circuits

and simulate the laid-out circuits by CAD programs (Mur 82]. It is very time consuming and

impractical to analyze the entire chip in VLSI design. We propose a timing optimization system

iJADE that uses a switch level timing simulator and a rule-based expert system as a decision

maker to replace the circuit designer. The switch-level timing simulator will provide timing

information much faster than circuit simulation such as with SPICE2 [Nag 75]. The expert sys-

tem mimics an experienced circuit designer's process. The circuit is described in terms of

transistors of different types and sizes, along with first-order estimates of the interconnect

resistance and capacitance.

A frame is a generalized property list. It can have any number of slots. The slots can

have any number of facets. The facets, in turn. can have any number of values. This structure

has the desirable feature of uniformity at every level. Schematic frames are those frames

which hold the information about the circuit elements as they are initially entered and further

classified by the program. Just below the root (whole) there are eleven frames: transistor.

capacitor. resistor. model, node. latch, sub-call. input. subcircuit. block, and strongly connected

component. The three data base operators (store. remove, fetch) are used to build and manipu-
X'

I -,,-', '.-, , - -' ' "." .- .'' .' : .-.-'-.-.- .- ..- .-. "- i.- , ... ,-.-i i .. .?, "_

4

late the data base. A hierarchical frame data base which is consistent with the hierarchy of the

circuit description is then constructed. Before the timing optimization there are typically hun-

dreds of critical paths that are as much as a factor of two slower than the slowest path in the

final design of VLSI chips. With careful circuit design the speed of a chip can be improved.

noise can be eliminated and clock skew can be reduced to a tolerable level [Sho 82].

In Chapter 3. a new switch-level timing simulator JADE with several features is dis-

cussed. JADE is a hierarchical switch-level timing simulator for CMOS circuits. The circuit is

described to the program in a SPICE-type input format as a multi-level hierarchy of subcircuits

and/or transistors and sources. The subcircuits at the lowest level in the hierarchy are corn-

-' posed of MOS transistors. resistors, and capacitors. The entire circuit is first partitioned into

various blocks at each level of the hierarchy. At the lowest level a block could be one of four

types. namely. an input source. a PMOS-driver block *consisting of P-type dc-connected MOS

transistors, an NMOS-driver block consisting of N-type dc-connected MOS transistors, a pass-

block consisting of dc-connected pass transistors and resistors. The entire circuit can be parti-

tioned in time linearly proportional to the number of MOS devices in the circuit.

'p'

The signal delays in JADE are computed hierarchically on a block-by-block basis. For

blocks at the lowest level in the hierarchy the delays are computed using a simple. yet fairly

accurate. delay model that takes into account the input slew rate. the configuration of transis-

tors within the block, and the output load. The characteristics of the delay operation are stored

in delay tables whose entries are computed by simulating three basic circuit primitives on an

accurate circuit simulation program such as SPICE2. Previous attempts at switch-level timing

simulator for NMOS circuits have used five primitives which results in extremely large and

unmanageable delay tables. However. JADE is able to manage with only three basic primitives

from which are constructed fairly small delay tables (around 120 entries). The delay through

a block can then be computed fairly accurately from these delay tables by mapping the block

IIg

to an equivalent primitive and using a simple time-scaling technique [Rao 85].

At each level of the hierarchy a directed graph is constructed with a vertex for every

block in that level and a directed arc from vertex vi to vi if an output node of block i is an

input node to block j. Strongly connected components in this graph are detected and collapsed

into a single vertex thereby resulting in a directed acyclic condensation graph. JADE then

simulates the blocks corresponding to the vertices of the condensation graph in topological

order. A waveform-relaxation based dynamic windowing method is used to simulate those

blocks within strongly connected components (Whi 841. The program then computes two

k2 parameters for each circuit node, namely, the earliest starting time computed by scanning

.* the vertices of the condensation graph in the forward topological order, and the

latest completion time obtained by scanning in the reverse order. A node is said to be criti-

cal if both parameters are equal. A block is said to be critical if it has both a critical input

node and a critical output node. A critical path is defined to be the longest directed path in the

graph composed only of critical blocks and/or subcircuits. Hence JADE is able to point out the

critical path at each level in the hierarchy. The hierarchical approach used in JADE save' a

considerable amount of memory space and the program executes at least 100 times as fast as

V SPICE2. yet produces discrete waveforms with timing typically within 10 percent of SPICE2.

In Chapter 4. the path delay reduction algorithms and rule-based expert system are dis-

cussed, iJADE is a hierarchical CMOS VLSI circuit optimizer. Using a switch-level timing

simulator and a timing analyzer. the program pinpoints critical paths. The circuit starts with

all minimum size transistors, and iJADE only adjusts those which need to be changed to

improve the performance. The path delay reduction algorithms and rule-based expert system

"' are applied to size the transistors such that the speed of the circuit can be improved while cer-

tain constraints are still satisfied. The equalized input arrival time algorithm is used to reduce

, : glitches when the difference between input arrival times is greater than a threshold value. The

6

path delay reduction algorithms handle the more general circuit tuning techniques so as to

speed up the execution time. For example. the RC time constant is used as the firm-order esti-

mation of how large the size scaling factor should be to achieve the timing specification. The

rule-based expert system takes care of the more specific cases and makes the deductions from

the information provided by the analysis tools. Because of the situation-action property in cir-

cuit design we choose the forward reaeoning as our inference engine technique. There are

about 20 rules to adjust the size of transistors in different situations. Experimental results on a

4-bit ALU and other circuits show that iJADE-optimized CMOS circuits perform competitively

or even better in terms of glitch avoidance, propagation delay time. and chip area.

V In Chapter 5. a timing error detector and corrector for synchronous circuits is discussed.

The clock pulse distribution has been a serious problem in VLSI design when logic elements are

physically separated but need to be gated simultaneously (Gta 771. In synchronous VLSI cir-

cuits. the detection and correction of timing errors due to clock skew requires accurate simula-

tion of clock waveforms in addition to data path waveforms. To detect timing errors the hold

time and the set-up time of each latch are checked with realistic signal waveforms. To correct

the timing errors two procedures are used: (1) resizing transistors in clock paths. (2) resizing

transistors in critical paths and shortest signal paths. An intelligent decision making algorithm

is used to judge where and how large the transistors should be resized. A 160-transistor exam-

-A. pie demonstrates that the use of this program can significantly reduce the design time over the

conventional manual approach.

Finally, in Chapter 6. we provide some conclusions along with some suggestions for

'U.- future research. Power dissipation is another important concern with the performance of very

large-scale circuits. Beginning early with the chip floor plan. it would be helpful to consider

*laying the power and ground wires on a VLSI chip. This will provide the designer with the

chance to estimate the power distribution at the pre-layout stage. Observation of the hot spots

'p%

on the whole chip is helpful for the designer to achieve better thermal immunity for the cir-

cuits.

N

U::

.b.

- ..ii 4. ~ ~

8

CHAPTER 2.

iJADE SYSTEM IMPLEMENTATION

2.1. Introduction

The program iJADE is written in Franz LISP and runs on a VAX under the Unix operating

system. The whole system consists of five parts: (1) the switch-level timing simulator. (2) the

switch-level timing analyzer. (3) the path delay reduction algorithms. (4) a rule-based expert

system. and (5) the frame data base. The switch-level timing analyzer finds worst-case critical

paths timing performance. The switch-level timing simulator provides more accurate timing

information than the timing analyzer and it also yields functional information. The path delay

reduction algorithms deal with the general case of circuit tuning techniques. They help to

speed up the program execution time. The rule-based expert system stores the circuit domain

knowledge and applies the optimization techniques. Through pattern and functional recogni-

tion the expert system decides the proper device size according to its loading capacitance and

topological structure. The frame data-base consists of the target technology file. circuit topol-

ogy file and the calculated performance information. The relation and interaction between

these five parts is depicted in Figure 2.1.

2.1.1. Signal Representation

Our primary concern is to provide a fast and accurate optimization tool for VLSI circuits

which gives adequate information on the performance of circuits with a reasonable expenditure

of computation time. A new class of digital simulators has recently emerged specifically for

simulating MOS VLSI circuits. These switch-level simulators [Bry 81]. tJou 83]. (Ter 83]. [Ous

5'Z

Switch-level
Timing

Simulator/Analyzer

Delay Reduction
Data-Base

Algorithms

Rule-based

Expert System

I

Figure 2.1. iJADE system.

85] model an MOS circuit as a set of nodes connected by transistor switches. Each node occu-

pies a discrete number of states 0. 1. or u for the intermediate or unknown state. and each

switch is either open. closed, or in an intermediate state. Digital simulators. in general.

operate at sufficient speeds to test entire VLSI systems. since the circuit behavior is modeled at a

logical rather than a detailed electrical level. We start with the signal representation to express

the analog waveforms in terms of discrete type values. Let to and if denote the initial and

final times of the simulation. At any time t 6ifo to 1. the three state digital signal X, (t) at

i...N .. '"h~~- - ~ *.~ *.

10

node n is related to its analog counterpart V. (t) as follows:

0 if O< V,(i) < V,
X.(0 U if VL<V . ()<V1 (2.1)

1 if Vh %V.(t)

where V, and V1 are two threshold voltages chosen such that 0 < V, < V, < Vda. Here. u is

an intermediate state between the steady low (0) and high (1) states used to represent signals in

transition.

A transition in a ternary signal is defined as a change in the ternary value of the signal

at a certain time instant. Thus. to completely specify a transition, we need to specify both the

type of transition and the time at which it occurs. A transition type is an ordered pair

(z. y) where z. y E(0. 1. u) and z y . There are four possible transition types. namely. (0.

u). (u. 1). (1. u). (u. 0). The data structure of a transition is expressed as follows.

([0. 1]. u. t d. or (u. [1.0]. t 2).

If. however, a ternary signal is constant throughout the time interval (to. t I then it does not

*, undergo any transitions. We represent such a signal by a sequence consisting of a single transi-

tion of a suitable type taking place before to. Thus a waveform that is always 0 is represented

by (u. 0. -1). and a constant 1 signal by (u. 1. -1). where the integer -1 represents all time

points t < to. A constant u signal. though seldom occurring in practice. can also be represented

by (0. u . -). The entire simulation time interval [to. tf I is discretized by choosing a

minimum resolvable time. denoted by hm,. so that a time point t can be represented by an

integer k if t E[t o+k*han. to+(k +i)*h m,]. Thus two different time points within this inter-

val are considered indistinguishable and are represented by the same integer k. The value of

h1mi is usually chosen to be very small, typically two or three orders of magnitude smaller

d: than the rise or fall times of the analog signals. A transition interval for a node is the time

interval during which the node is in the intermediate state. u. Associated with each transition

interval I for a node nj is a fanout list of blocks and/or subcircuits. denoted by F (I). Let t I

and t 2 denote the initial and final times of the transition interval I. Its data structure is

q%

expressed as follows:

(tl t2. F(1))

' Let S =a , a2. ap be a sequence of transitions where each a , -(z. .• ky). The sequence

S is said to be chronological if k 1 <k 2 < ... <k,. A chronological sequence is said to be

compatible if (z . y,) is an allowable transition type for each 14j 4p and y, "-z, for

each 1 < j p -1. where p is the number of transition in a sequence. In a compatible sequence
"Jk

therefore. the final value of every term in the sequence is equal to the initial value of the

succeeding term.

Two sequence S, =(a, and Sb =(B, S with the same number of terms, and where

a, =(z . y. . k,) and 0, -(z,'. y,'. k,'). are type equal if z, =z,' and y, -y,' for each Pi 4p

and time equal if k =k, for each I p a<p. The two sequences are equal if they both type

equal and time equal. It must be noted that two sequences can be compared for equality if and

only if they have the same number of terms.

Two successive terms a, and a, I in a compatible sequence with z, E(0. 1] are said to

form a complete pair of transitions if y, ,:a-z, and a prtial pair if y, I-z, . A compatible

sequence of transitions is said to be a complete sequence if it has no partial pairs. Given two
-p~

compatible and complete sequences S. =[Rz, . k, -] and Sb =[(z, . y, k,)] that are type, =1 i

equal. we define a measure on the difference in transition times between the two sequences to be

k, -k,'p(S, .Sb)= max I - -I.

2.2. Hierarchical Data Structure and Algorithms

'CAD for hierarchical design has to satisfy two following conditions. First. it must sup-

port the hierarchical design methods. Secondly. it must provide improvements in capacity and

U

%.. .=

12

efciency that can be expected from hierarchical tools. Precise hierarchical algorithms in which

structured designs can be described are the chief sources of support of the design method. CAD

programs must ensure fast excursions through the hierarchical structures. both through the

levels at a certain design stage and also between design stages.

By retaining the hierarchy of a design in internal data structures. the problem of duplicate

data storage is completely eliminated. While a flattened data structure for a VLSI design con-

sumes huge amount of storage. a hierarchical approach only needs small portions of storage. In

addition, any increase in circuit complexity that is obtained by better utilization of structure

and repetition does not increase the size of a hierarchical data structure. in contrast to the

flattened data structure. Therefore. hierarchical tools can solve the capacity problem of design

data storage effectively. The run time of CAD programs is affected in a similar way. The exe-

cution of CAD programs on modules instead of on a complete circuit in itself constitutes an

advantage because of memory allocation problem.

2.2.1. The Algorithms of iJADE

iJADE system consists of several structure building procedures and a design evaluation

and parameters refinement loop. The algorithms of iJADE are described as follows:

1. Read the circuit file and design specifications.

2. Calculate the parasitic capacitances contributed by the devices.

3. Build the frame data base.

4. Partition the circuit hierarchically.

5. Order the partitioned blocks. subcircuits. and strongly connected components. "

6. IF sequential THEN trace clock paths and identify latches. .

(Select the tools: Timing Simulator or Timing Analyzer)

WHILE (rules can be applied) DO

1-

" ,' ... '' , ""'' ' .. , ' .,",.. -. ..";.&.-z",'." ",","; ,". ,"' """" ''"., .-''..y2'''. -,.,-,

13

j 7. Calculate the equivalent lump capacitance and resistance.

8. Calculate propagation delay times and search critical paths.

9. IF Sequential THEN

Trace critical paths between latches

Timing error detection

Timing error correction.

10. Execute the path delay reduction algorithms.

11. Execute the production system.

12. Modify transistor sizes and/or insert buffers.

13. Update the frame data base.

UNTIL (specification satisfied).

14. IF success THEN (Print out results) ELSE (Print out suggestions).

2.2.2. Frame Data Base

A frame is a generalized property list [Win 81]. It can have any number of slots. The

slots can have any number of facets. The facets. in turn. can have any number of values. This

-. structure has the desirable feature of uniformity at every level. Schematic frames are those

frames which hold the information about the circuit elements as they are initially entered and

further classified by the program. Just below the root there are ten frames: transistor. capaci-

tor. resistor. model, node. subcircuit-call. input. subcircuit. block, and strongly connected com-
-'d

ponent. A hierarchical frame data base which is consistent with the hierarchy of the circuit

description is then constructed. We store the structure on the property list of each frame under

the property frame. Given this structure for frames. we implement the following functions

to administer the data base.

1. (FGET frame slot facet): fetches information;

'14

2. (FPL'T frame slot facet data): stores information:

3. (FREMOVE frame slot facet data): removes a specific data:

* 4. (FREMOVE* frame slot facet): removes information of the access path:

5. (FREPLACE frame slot facet data): replaces with the new data:

6. (FGET-V-D frame slot): fetches information. The VALUE facet is inspected first. If

nothing is found. then the DEFAULT facet is also inspected.

7. (FGET-l frame slot): fetches information. If nothing is found in the VALUE facet. then

the function looks at the frames found in the given frame's AKO slot under the VALUE

facet. This enables a frame to inherent information from the frames related to by the AKO

relation. an abbreviation for a-kind-of relation.

* (FGET-Z frame slot): fetches information. It uses values. defaults. and value-finding

function, not only as found in the given frame but also in the frames related by the AKO

relation.

Schematic frames are those frames which hold the information about the circuit elements

as they initially entered and further classified by the program. Just below the root "whole"

there are eleven frames: transistor, capacitor. resistor. input, model, node. subcircuit.

subcircuit-call. block, latch, strongly connected component(SCC). More detailed information

about the contents of each frame can be found in Appendix A.

Data are stored in two kinds of representations: (1) flattened type. and (2) hierarchical

type. The flattened type stores those data that are few but specific to some objects. The

hierarchical one stores the structural information that is common to a group of flattened

representations. The flattened type is linked to the hierarchical type through "akoo such that it

' can inherit properties from its ancestor. as shown in Figure 2.2. The usage of links in the frame

data base assures the efficient use of storage space by reducing redundant data in the data base.

.4.4 '

A - " - " -p " " " ,' '' e k . . ' . .' ' , '' ' -. ' ' -. ,.

15

0 0 0oo

1 Common &Many

F FI F 2 0 0 F.

0 0 0

Few & Unique

", Figure 2.2. Inheritance property.

The active devices are stored in a stack with the current active device at the top of the

stack. We do the push operation when entering a subcircuit and the pop operation when leav-

ing a subcircuit. The list structure in LISP is best used in the stack implementation to keep the

Ihierarchical relationship. The recursive nature of list processing makes the analysis of the sub-

circuits faster and easier. The hierarchical description is needed to locate and identify the prob-

lem site in VLSI circuits quickly and accurately.

...

2.2.3. Hierarchical Algorithms

The most significant advantage of hierarchical algorithms is that some operations can be

done only once for all the same subcircuits in the different hierarchical levels. In the JADE

. Ie

16

system. the partitioning. ordering, and some static properties like two terminal nodes of the

equivalent resistor algorithms are done hierarchically.

Let S denote the sequence of transitions computed by switch-level simulation. and let

V, be the actual analog waveform at a node n E N in the network. We can obtain the

three-state digital equivalent of V using the transformation in Equation 2.1. Let S,' denote

the sequence of transitions corresponding to this ternary digital equivalent. The aim of our

switch-level timing simulator is to compute S, that is time-comparable to 55'. such that.

p(S$,. S,)< where e is a measure of the accuracy of the timing simulation. The function

simulation is a recursive algorithm to simulate the circuit hierarchically as depicted below.

4.

Two important functions. pass-up and pass-down are used to pass the information
.'

between different levels of the hierarchy. They act as information bridge in the hierarchical

structure.

4.

function simulation (circuit)For all the blocks. subcircuits.

and SCC of the circuit in topological ordering DO
BEGIN
If module E subcircuits Then

(pass-down information)
(simulation module)
(pass-up information).

If module E NMOS-driver Then
(driver-simulation module).

If module E pass-block Then
(transition-interval-calculation)
(pass-block-simulation module).

If module E SCC Then
(windowing-relaxation-simulation module).

END.
END.

.41

,,:, ,: ,:::.,.,-:-. ,.:,.-.,,...,.-..........,, ,..... . .

17

f unction pass-up
For each output node of the subcircuit.

Pass information from lower level to higher level.
END.

function pass-down
For each input node of the subcircuit.

Pass information from higher level to lower level.
END.

22.4. Simulation of Driver-block

Let fl1 be a driver-block that is to be simulated with n, as its output node and

IN PUT (l) as its input nodes. For each input node n, .let S, denote the sequence of tran-

sitions at that node. and let z, E L denote the ternary value of the node signal at some time

instant. Also. let S, be the sequence of transitions to be computed and Z, denote an instan-

taneous value of the signal at node n,. A driver-block can be viewed as a network of switches

between the drain and source nodes of its driver transistors whose conduction states are con-

trolled by the ternary signals at the gate terminals. The basic idea in conventional switch-level

simulation is that the signal at a node can only be changed by a signal at a stronger node and

j can change the signals only at weaker nodes.

We now introduce the notion of zero-delay through a block in a network. By this we
.-

mean that there is no delay element present in the block and that at any instant of time the ter-

nary value of the output signals can be determined from those at its input signals at the same

instant of time. The algorithm to obtain the zero-delay sequence of transitions at the output

.: node of a driver-block begins with the simplification of parallel transistors of the driver-block.

__ It then picks an internal vertex v in this simple graph and eliminates v from the graph and

then simplifies the resultant graph. This process of elimination followed by simplification is

repeated for each internal vertex. The end result is a simple graph with two vertices, namely.

the output vertex and the Vjj / V,, vertex. The simplification of a graph is a graph obtained

by collapsing all parallel edges into a single edge whose edge sequence is the sum (v) of the

18

sequences of the parallel edges. We define the elimination of a vertex v from a simple graph

as a procedure involving the following two steps:

(1) For every pair of vertices a and b adjacent to v in the graph. add an edge between a and

b with the edge sequence of this new edge being the product (A) of the sequences

corresponding to the edges (v. a) and (v. b). respectively.

(2) Delete the vertex v and all the edges incident on it from the new graph obtained in step 1.

Once the zero-delay sequence is obtained the transition times are delayed by a delay operator

and the whole sequence is filtered using techniques to be discussed below.

I

2.2.5. Delay and Filter Operator

The task of the delay operator is to alter the transition times of the zero-delay sequence so

that the resulting ternary waveform corresponds fairly close to the ternary equivalent of the

analog waveform if computed by an accurate circuit simulator. Each application of the delay

operator is followed by a filtering operation which accounts for the effect of delaying a corn-

plete pair of transitions on the future transitions in the sequence. The filtering operator also

transforms a partial pair transitions into a form that can be handled by the delay operator.

The delay operator is characterized by delay functions which are computed by an accurate

circuit simulator for a set of standard circuit primitives and stored in tables. The primitive cir-

cuits do not change as long as the technology remains fixed. Hence. the computations of the

delay functions are performed only once for each technology. The delay operator computes

function driver-simulation
(zero-delay-sequence)
(delay-operator)
(filter-operator)
END.

- - - - ..- .J--

19

Inew values for transition times in a complete pair of transitions at a certain node in a general

block in two steps. First. a mapping technique is used to transform the block into a

configuration that resembles one of the primitive circuits for which the delay functions have

p been computed. Time scaling is then used to transform the new configuration into a standard

primitive. Then. the delay values can be obtained through a table lookup. The three primitive

circuits and circuit transformations are discussed in Chapter 3.

Consider any sequence S of transitions. We mark a term of S as adelayeda if the delay

operator has been used previously on this term. otherwise, we mark it 'undelayed." The subse-

quence of S consisting of all terms marked Odelayedo is called the delayed part of S. The rest

of the sequence is the undelayed part. Thus. we can consider any sequence of transitions to be

the concatenation of its delayed part and undelayed part. Let us consider S as an input

e, sequence to the filtering operator. The output of the filtering operation will then be a sequence

S' which is computed as described below. First. the filtering operator replaces any partial pair

. (z. u. k). (u. z. k) +1) of transitions in the undelayed part of S by two complete pairs

(z. u. k). (u. -,z. k +1). (-'z. u. ki +1-1). (u. z. ki +t). This is done by the function com-

plete used below. We will also make use of the function window (S. ka . kb) that returns

those transitions in S occurring between k, and kb . The function that performs the filtering

operation is given below.

22.6. Simulation of Pass-block

A pass-block consists of DC-connected pass transistors and resistors. Consider the set T t

of transition times of the signals at the gate nodes arranged in an ascending order. These time

points divide the time interval of simulation into several phases such that during each phase

01 =(k, k, .1) the signal at each gate node is at a fixed ternary value. i.e.. 0. u . or I. The time

..

4 20

function filter (S)
(complete S)
For each transition in S marked "undelayed" DO

BEGIN
(z . , k,).- first transition in S
(u. -z. k, .I)- second transition in .

"k;. kj* , -delay (k kj +):

(window S "0. k,):
y - final value of S "
If (equal y x) Then (append (z. u. k,). (u -z. k,'.] S)).
If (equal y u) Then (append (u. -z. k; , 1) S).
S '-(cddr S):

END.
(return S):
END.

function transition-interval-calculation
For each transistor in the block DO

Get the transition time of the gate discrete waveform sequence.
Sort the transition times list.
Composite the transition times pairs.
END.

k, is the initial time and the time k, +1 is the final time of phase 0, . Let s,., denote the

fixed ternary state of the signal at gate node n, during phase 0,. We partition the set of drain

and source nodes of pass transistors in the pass-block into three subsets:

(1) N, . the set of nodes of input strength.
(2) NP. the set of nodes of pull-up strength. and

(3) Nn . the set of nodes of normal strength.

Given the sequences of transitions at each node in N, and N., in the pass-block, the task

is to compute the sequences of transitions at the nodes in .V,. We simulate the pass-block in

the first phase 01 followed by the next phase and so on. updating the node sequences for the

normal nodes in each phase. The simulation of a phase 0, begins by constructing an undirected

graph H, with vertex set corresponding to the drain and source nodes of the pass transistors

and the two terminals of the resistors, and the edge set E, initially empty. For each resistor.

an edge is inserted between the two terminals of the resistor. For each pass transistor. an edge

La

V21

s inserted between drain and source if si. =1. Each connected component of the graph

represents a switching network with nodes connected by two terminal switches that are in the

closed state. Consider a component C, of the graph. Let STRONG, denote the subset of the

p strongest nodes in C,. where the node strengths are ordered as input >pull -up > normal.

The strength of the component C, is then defined to be the strength of its strongest node(s).

If ISTRONG,1>1 and the strength of C, is either input or pull -up and these strongest

nodes are not at the same state (0. u. 1). then a conflict is declared at each normal node in the

component. In case a node is experiencing a conflict in the present phase 0j . the intermediate

state u is assumed. A pass transistor is said to have a state is if its gate node is at the u state

in the present phase but occupies a I in the next phase. A transistor in the u state in the
.1*

present phase is in an intermediate conducting state but would occupy a closed state during

the next phase. The transistors whose gate signals are in the 0 state or in a u state but not in a

u state are ignored during the present phase.

If the strength of C, is normal, then charge sharing is said to take place among the

normal nodes in the component. Given any sequence of transitions. one can define the

snitial value of the signal to be the ternary value before the occurrence of the first transition

and the final value to be the one after the last transition. For each node n, EC, . let S(n,)

denote the existing sequence of transitions at the node and s, denote the final value of this

sequence. We define an equivalent voltage vq corresponding to the ternary signal s, as

V'q =0. 0.5 * Vi. or Vj depending on whether s, =0. u. or 1. respectively. The charge on a

node n, is defined to be the product v,, *CAP (n,). where CAP (n,) is a lumped capacitance

from node n, to ground. In the case of charge sharing among the nodes of normal strength in a

component. the total charge in the component is computed by summing up the charges on each

node in the component and this quantity Ls divided by the total capacitance to yield a final vol-

tage. The final ternary value s! reached by all the nodes in the component after charge sharing

.01

22

is then computed from v! as s1 --0. u. or 1 depending on whether v 4 V, , V < v! <V, . or

, 4 V ! . respectively, where V1 and V1 are the low and high threshold voltages. The func-

tion pass-b ock-simuLatwn is described next.

2.2.1. Simulation of Strongly Connected Components

In this section we discuss the use of a special windowing technique to simulate the

driver-block and pass-block within a strongly connected component (SCC). The algorithm

splits the entire time interval of interest [0. K I into various time slots or windows such that

all pairs of signal transitions take place entirely within one of these windows. This is achieved

by maintaining a sequential list of intervals of transitions which are updated dynamically as

the algorithm progresses. The algorithm is. in a sense, event-driven, since only those circuit

blocks that are active within a window are processed and the fanouts of the output nodes of

these blocks are scheduled for future processing. The windowing-relaxation-simulation is

described below.

f unction pass-block-simulation
For each transition interval of the block DO

BEGIN
(linking)
(strength)
If (equal strength 'conflict) Then

(conflict).
If (equal strength 'normal) Then

(normal).
If (equal strength 'pull-up) Then

(transformation)
(delay)
filtering).

If (equal strength 'input) Then
(delay)
(filtering).

END.
END.

23

2.2.8 Timing Analysis

For circuit or timing simulation a set of input test vectors is provided to get the

corresponding output waveforms. Although in principle this approach can catch every sort of

timing problem, it is very expensive to perform. Moreover. it is difficult to construct a set of

test data which is guaranteed to cover all relevant cases. An input-independent timing analyzer

is needed to find the worst-case timing performance. We calculate the worst-case equivalent

q resistance for driver block instead of dynamic equivalent resistance in simulator. In the timing

analyzer an exhaustive search algorithm is used in function worst-r to find the worst-case

equivalent resistance of a driver block.

function windowing-relaxation-simulation
For each interval DO

For each fanout DO
BEGIN

Simulation of the first window.
Update interval with output node's waveform.
If converge Then piece waveform together.

END.
4. If no overlap with first window

Then remove first window
END. Else modify the interval.

.END

function worst-r
Start with one of the two equivalent resistor nodes.

'e' For all the paths DO
Expand the first path with the neighbors of the leading node.
Update the leading node and the serial resistance of new paths.
If a path reaches the other end of the block Then

Update the maximum equivalent resistance.
Remove the path from the path-list.

Else Appends new paths to the path-list.
END.

END.

IAl

24

2.2.9. Critical Path Generation

Function critical-paths is a recursive algorithm to trace the critical path hierarchically.

Each node is processed once - when the delay time from the start node to all nodes feeding it

have been determined. By this means, the output of the node being analyzed will just be its

own delay time plus the time of the maximal delay input. When the maximum delay times for

all nodes have been determined, the maximum time for the end point will be known. Deter-

mining the critical path then corresponds to just tracing back through the maximal delay inputs I
feeding each node until the start node is reached [Hit 82].

function critical-paths
Start backtracking from the node Nmd with the maximum delay time.
If Nw E OUTPUT (Block,)

Then (trace-block)
Else (Go-down one level of the hierarchy) (trace-subcircuit).

END.

function trace-block
Append the block to critical paths.
Find a critical node N, from INPUT (Block,).
If N , EINPUT(WHOLE-CIRCUIT)

Then STOP.
If N., E OUTPUT (Block,) .

Then (trace-block)

Else if V, E OUTPUT (Subcircuit)
Then (Go-down one level of the hierarchy)
Else (Go-up one level of the hierarchy)

(trace-subcircuit).
END.

function trace-subcircuit
Pass down VN, from upper level.
If .V,, E 0 U TP ' T (Block)

Then (trace-block).
If .V, E OUTPUT (Subcircut) ,

Then (Go-down one level of the hierarchy)
Else (Go-up one level of the hierarchy).

(trace-subcircuit).
END.

V.

o'|

''S.... - .ua ,-.. "
-*"- '-"-' ". ' " . .'-"--"" ------....--..----..------.-.--- -------- - -" .. ''"-.,.',.J'.. '' .',,

r -" w2 -- '%' "%'" # % % " " "''' -' - ', " "-F. ' ' "- "" "" " "."........ -'.dl". t -- ' ,

25

2.2.10. Clock Path Tracing

In synchronous circuit timing analysis we identify the latch and its clock triggering times

in order to check its timing validity. The clock path is traced from the defined clock node for-

ward through the clock buffer in different hierarchical levels. The algorithm is similar to the

one that traces critical paths except the latter does it backward.

.

function clock-path
Start from the defined clock node NiVj

1,1 If ,1Ck is the only input of Bloc,
except power supply and ground.

Then (trace-block-clock)
Else (Go-down one level of the hierarchy) (trace-subcircuit-clock).

END.

function trace-block-clock
Append the block to clock paths.

,, Append output nodes Block to clock-nodes.
For all new clock nodes DO

If , is the only input of Block,
except power supply and ground.
Then (trace-block-clock).
(Go-down one level of the hierarchy forward)

,s (trace-subcircuit-c lock).
(Go-up one level of the hierarchy forward)
(trace-subcircuit-clock).

q END.

function trace-su bcircuit-clock
Pass VnL,_ from previous level.
If (null N,,,-,tk) Then STOP.
If isew.eh is the only input of Block*
except power supply and ground.

Then (trace-block-clock)
Else STOP.

(Go-down one level of the hierarchy forward)
(trace-subcircuit-c lock).
(Go-up one level of the hierarchy forward).
(trace-subcircuit-clock).
END.

I-.

1,.. 4
)f S.

• , . .. , r r " * * . " % ," % ,
- ' ,

•' '% ,
' ' % - . ' % "

%''""'
" ' ' " ' ' ' "

55

26

Ji

2.2.11. Propagation of Capacitance Changes

The capacitance changes produced from sizing transistors must be propagated to the same

position but in the different levels of the hierarchy. The procedure provides up-to-date capaci- i
tance loading information so that the later tuning of the path delay has the appropriate capaci-

tance for transistor sizing. The function chiwige-lump-capacitance is a recursive algorithm

described as follows.

2.3. Summary

We began this chapter by defining transitions between ternary states and showing how

sequences of transitions can be used to represent ternary digital waveforms of signals. A frame

data base structure for circuit topology representation was discussed. Data base operators were

function change-lump-capacitance
Change the gate capacitance.
For all subcircuits that have the node as one of its output nodes DO

* (load-down)
(load-up)
END.

* function load-down
Change the node lump capacitance.
For all subcircuits that have the node as one of its output nodes DO

Q (load-down)

END.

function load-up
If the node is one of the input nodes of a module Then

Get the corresponding node in the upper level.
For all subcircuits that have the node as one of its output nodes DO

(load-down)
(load-up)

END.

I
.. --.Z.

*b
•

* a

2'7

*implemented to facilitate the manipulation of the hierarchical data base. The hierarchical

frame data base is the common data base that stores circuit structure, timing performance and

all the information shared by the analysis tool and the rule-based expert system. An

integrated system with a common shared data base does not have to transform the data format

between the different phases of the CAD system. We also presented algorithms that perform a

switch-level timing simulation. the critical path tracing. and some operations in circuit optimi-

zation. A circuit is divided into four kinds of structures: driver-block. pas-block. SCC. and

subcircuit. In the case of a driver-block we showed that the zero-delay state of its output node

at any instant of time is a function of the states of its input nodes at the same time instanL

For a pass-block, we presented a more complex, and somewhat heuristic, approach utilizing the

full power of conventional switch-level simulation. In the case of an SCC. an event-driven.

dynamic windowing relaxation algorithm is used to calculate the waveforms of its output

nodes.

* The input-independent timing analyzer uses the worst-case equivalent resistance and the

slowest input slew-rate to calculate the worst-case timing performance. In the case of an SCC.

a single pan algorithm is used instead of the relaxation algorithm as in the timing simulator. A

Project Evaluation and Review Technique (PERT) model was used to trace critical paths of the

circuit. The algorithm traces the hierarchy of the circuit structure and presents its components

in a unique flattened representation. The flattened name is combined from the block name and

the current active device list. The clock node and clock buffer are traced forward to identify

. latches and the clock triggering time to check the timing validity of the synchronous paths.

..I.

28

CHAPTER 3.

HIERARCHICAL SWITCH-LEVEL TIMING SIMULATOR

3.1. Introduction

The problem of switch-level timing simulation of a digital circuit can be summarized as

follows. Consider the analog waveform V. (t). t E(to. t1 I at a certain node n in a digital cir-

cuit and choose p -1 threshold values, ordered as V I< V 2 < . . . < vp.I- Define the p-state digi-

tal equivalent of V, to be

X (t)= z, if vi < V,,(t) vi.1

where z o. z 1 zp- 1 are the p digital states and v0 and vp are the minimum and maximum

values of the analog waveforms respectively. We also define

T, = " V. (t)E(v 1 . v 2 . . UP)].

Thus T, is the set of threshold crossing times of the analog waveform at node n in the circuit.

or alternatively, the set of state transition times of its p-state digital equivalent. The aim of a

switch-level timing simulator is to obtain the p-state digital equivalent X, for each n EN.

with special emphasis on computing the elements of T = U T,. where N denotes the set ofrviEN

nodes of interest to the user.

The switch-level approach has been popularized recently by Bryant and others (Bry 81].

(Jou 831. (Ous 85] as a simulation model for MOS digital systems. In this chapter we describe

an application of the switch-level model to timing simulation. JADE is'a hierarchical switch-

level timing simulator for CMOS circuits implemented in LISP. The circuit is described to the

program in a SPICE-type input format as a multi-level hierarchy of subcircuits and/or transis-

tors. resistors. lumped capacitors and voltage sources. The signal delays in JADE are computed

hierarchically on a block-by-block basis. For blocks at the lowest level in the hierarchy the

,%,
N%

.29

delays are computed using a simple. yet fairly accurate. delay model that takes into account

the input slew rate. the configuration of transistors within the block, and the output load. The
I.

important issue in timing estimation of MOS circuit is whether or not the triggering transistor

is fully turned on during the transition interval, and this depends on the input rise-time, the

output load. and transistor size. We will use a notion of two-threshold delays to measure the

effect of the slope of the input waveform on the timing at the output of a logic gate or a func-

tional block. We treat V,. to be an analog ramp waveform with a full swing of Va . This

waveform will then cross two threshold voltages V, and Vj, where 0< V, < Vh < Vjd. Let

1 and t 2 denote the two threshold crossing times. Let t ; and t ; be the output threshold

crossing times. We defined Ai. =t 2-t I as a measure of the delay of the input signal and two

delay quantities. Ait;-t. known as the inertial delay, and At=t-t. known as the

rise/fall delay. The voltage and timing relation of the delays is illustrated in Figure 3.1.

3.2. Circuit Partitioning and Ordering

A MOS digital circuit (V. M. R) consists of a set of nodes N interconnected by a set

of MOS transistors M and resistors R. There are four types of nodes: input nodes. output

nodes. pull-up nodes, and normal nodes. Input nodes, which are modeled as ramp voltage

sources, provide the strongest signals to the circuit from the outside. Examples of input nodes

include the power supply. the ground node. as well as all the input clock signals. A pull-up

node is attached to the power supply Vjj via some PMOS-driver(s) and linked to the ground

via some NMOS-driver(s) only. The remaining nodes in the circuit are classified as normal

nodes. A output node is an input node to another block or a print node. A output node can be

a pull-up node or any DC connected node in the pass block.

For circuit partitioning, the pass transistors with a PMOST and NMOST pair connected in

• ,parallel are first identified. Then a pull-up node candidate is marked if it is connected to both

PMOS and NMOS transistors excluding pass transistors. The potential pull-up node would be a

-V-r-.. .. AV .

30
I

,4j, Voltage

Input Output

V4

Vt,

I

I t t 2 t 2 Time

I

Figure 3.1. Switch-level delay time definition.

real pull-up node if it is connected through a DC path to the power supply or ground node. For

each node of the circuit we check the DC paths one by one to see if there is any pass transistor

pair. Nodes and transistors in a circuit are partitioned into various subcircuits or blocks by

splitting the input nodes and pull-up nodes, where each block could be one of four types, input I
source, PMOS-driver block, NMOS-driver block, or pass block. In the node splitting phase. the

new symbolic name of the split node is the combination of its original name and its DC con-

nected neighbor name. We then search DC connected components using the new name as an

indicator. After DC connected components are identified we return each combined name to the

original one. The node splitting method is illustrated in Figure 3.2.

The PMOS-driver block is a DC connected component of PMOS transistor(s) between the

power supply and pull-up nodes. The NMOS-driver block is a DC connected component of

* S'. . ' i ' ~~j*).
d

* ~ **~

31

-13.1

3IZ 3.0

-c 0
00

Figure 3.2. Node splitting method.

NMOS transistor(s) between the ground node and the pull-up node. The other DC connected

components containing pass transistor(s) and resistor(s) are called pass-blocks.

Let E denote the set of partitioned blockcs in the circuit and let fl(N . .X) denote the

partitioned MOS circuit. Furthermore. let I N P (n,) and O U T (fn,) respectively denote the

set of input nodes and output nodes of a block fl, EZ. For each node n, E,V in the network.

let fanout (n,) denote the fanout list for the node which is the set of blocks in E having n,

as an input node. and let fanin (n) denote its fanin list which is the set of blocks with n,

as an output node. Thus.

fanout(n,)[fl,:n, EINPMfl,)J

and

fanin (n,)[fl :n, E OUT(fJ) .

At each level in the hierarchy a directed graph G (V. E) is constructed with a vertex for

I~ kj IS "I Kt'./< \~. 7

321

every block in that level and a directed arc from vertex vi to v, if an output node of block fIl,

r is an input node to block fl, We will then say that G represents the partitioned MOS circuit

fl at that level. A directed graph is said to be strongly connected if for every pair of vertices

v, and v1 there exists at least one directed path from vi to v, and at least one from v, to vi .

A maximal strongly connected subgraph is called a strongly connected component (SC C)

[Rei 77]. It can be determined with time complexity 0 (1 V I + IE I). where V is the set of ver-

tices and E is the set of arcs in the graph G. After the SCC have been determined, the edges

going into the blocks from outside of the SCC would be redirected from the blocks to the SCC.

The edge redirection method is shown in Figure 3.3.

A simple use of the depth-first search technique on the digraph determines a labeling of

the vertices of an acyclic digraph G-(V. E) with integers 1.IV 1. such that if there is a

directed edge from vertex i to vertex j . then i < "j such a labeling is called a

topological sort of the vertices of G. The time complexity is also 0 (I V I + IE I). since every

edge is traversed once and the procedure TOPOSORT is called once for each vertex.

Figure 3.3. SCC edge redirection.

'•+ 1

33

3.3. Delay Operation

Consider a block 0, EE in the partitioned circuit (N. M. Z). Let ni. EINP(0i) be

some input node to 0i and na EOUT(() be an output node of fn,. Let d(n,. nw)

represent the maximum delay when a signal travels from ni. to n,., through the block f0i

The primary objective of the delay operation on block n, is to determine d (n,,. n0) for

every pair of nodes (ni,, . n,,) such that n, E INP (fl,) and n0. E 0 U T (,).

3.3.1. Multiple Rise/Fall Delay

When overlapping input transitions cause an output transition. the delay is calculated by

a procedure specific to an element type. For each block we calculate an equivalent input
-.3

sequence Seq. For example. consider overlapping input transitions in a NOR gate. We compute

Seq =S IVS 2. where S I and S2 are the input sequences to the NMOS-driver gates. Since only

one NMOS-driver transistor needs to be ON to make the output 0. the delay time is determined

by the fastest rising input. On the other hand. the output rising delay time is determined by

the slowest falling input of the PMOS-driver transistors. We define the block delay as

tj =At 1+At 2. For each path. two propagation delays are calculated: one for rising-path start.

.4-. and one for falling-path start. Blocks along a given path may be inverting. noninverting, or

indeterminate. For indeterminate blocks, as in the case of the exclusive-NOR gate. both rise

-and fall delay are calculated and the worst case is assumed. In the case of blocks within an

SCC. we start with the latest arrival input node and accumulate the delay times along the path

until we encounter a cycle. An example is given in Figure 3.4 to illustrate the delay times

accumulation inside an SCC. During the signal propagation period we record the worst rise

delay for a PMOS-driver block, fall delay for a NMOS-driver block, and both rise and fall

delays for a pass block [Al-H 85).

iI,

34

latest arrival input

ii

Figure 3.4. Delay times accumulation method inside an SCC.

3.3.2. Equivalent Capacitance

As depicted in Figure 3.5. each MOS transistor has five separate voltage-dependent capaci-

tances coupling its four electrodes. To simplify the calculations of switching times all capaci-

tance effects are lumped into a single total capacitance Ct which is connected to the output

node of each inverter or gate (Hod 83]. Voltage-dependent effects of junction capacitance are

removed by defining equivalent linear capacitances Ceq. which require the same change in

charge as the nonlinear capacitors for a transition between two voltage levels. V Iand V 2-

With V 2 > V1.

C Q = Q(V 2)-Q(V 1) m KqC)o.
~q - , U4V- VI/

The depletion-layer capacitance per unit area C o of an abrupt n *p junction is

C J 0 q e .N A ,

S.,

Iis--, 5 5 'C'/, . .45.. S

35

COd CDb

oD

G B

coo Cg

C9*

B Figure 3.5. MOS transistor capacitance.

where q - electronic charge. e, - permittivity of silicon, and ,VA - acceptor impurity concen-

tration.

The built-in junction potential 00 is calculated from physical parameters as follows.

.:, NA ND
..' 00= V'T in(- -,-).

-n,"

p. where VT - the thermal voltage. ND - donor impurity concentration. and n, - the intrinsic

concentration.

'P.•., K~q . the dimensionless constant used to relate C,, to C, 0 for specified values of V I and V 2 .

is calculated as follow.
K IV2) -,,, 0 V I) --,

' = -[(1 - (V i].

where m value depending on what type of junction in the transistor.

Sidewall capacitances cannot be ignored for modern MOS processes; the sidewall capacitance per

unit area is higher than C, 0 because the n source and drain abut the p field diffusion.

Ib

36

Adequate accuracy is achieved by taking the sidewall area as the product of diffusion perimeter

P and the junction depth X, . neglecting the curvature of the sidewall and the gradient in field

doping.

CJS W =C2 oXi P

The capacitance between the drain and substrate. Cdb. is the sum of the junction capacitance

Area*Cj o and the sidewall capacitance CJSW. The parasitic capacitance between the gate

and drain C',d is the product of lateral diffusion LD and the width of the transistor W,

c o = C,.LD W.

where Co= is the oxide capacitance between the gate and channel of the transistor. Finally. the

lumped capacitance Ct is made up as follows: Ct = Kq Cdb + Cod .

3.3. Equivalent Resistance

The transistor is approximated as a resistor in a lumped RC model. The equivalent

lumped device capacitance is calculated and lumped with the load capacitances at the output

node. The load and device capacitance are assumed to be constant. and bootstrapping effects are

* not simulated. The equivalent resistance is a function of input slew rate and A(= W IL) i.e..

R,q =0 f (Ai,,). More specifically we take Req =(At 1+At 2)/(1.6 C). To further illustrate this

equivalent resistance concept. consider the following example, shown in Figure 3.6. The delay

of the above circuit will be calculated in the following transformed circuit, shown in Figure

3.7. where Ceq -C 2 . (C I+C 2).
eq

.9 1

I

;, ,r_ ,! :,<l, .,_ . .',:,' , , .. ,'. ,,,'.s ' ;.'.",". • , ' ."'" .' ." "- "
'

31

gra

• ,-, 5v

"-',gn d gn d

Figure 3.6. Pass transistor with interconnection resistance.

Ov

-7 - -
5v T

gnd

Figure 3.7. Equivalent pass transistor.

3.3.4. Primitive Cells Simulation and Transformation

For CMOS circuits, knowing the delay characteristics of three different circuit primitives

is sufficient. within reasonable limits of accuracy. to compute delay through any general

PMOS-driver block. NMOS-driver block, or pass-block. The three primitives are simulated

using an accurate circuit simulator SPICE2 for various input slew rates. and the delay values

are extracted and stored in delay tables. This can be done in a pre-simulation phase. During

simulation. JADE then maps a PMOS-driver block. NMOS-driver block, or pass-block into one

of the three primitives and obtains the appropriate delay value through a table lookup method.

interpolating when necessary. The configurations of the three basic primitives are shown in

Figure 3.8. 3.9. 3.10 respectively. Previous timing simulator for NMOS circuits, namely

-I

* 5 , , , , , l , .. , , , , .. , , - i , : . , . , . . , , ., - , , , : , , . . . 3 r . - r
'
1 ,z - ' , , • -

38

MOSTIM [Rao 851. has used two additional primitives. i.e.. type 4 shown in Figure 3.11 and

type 5 shown in Figure 3.12. We can transform the primitive 4 circuit. by using the Elmore

equivalent capacitance concept, to the primitive 2 of the delay operator as shown in Figure

3.13. Here Ce€ =C 1 +C 2(1+ .p -1) when C 2 is being charged. and
T-pT

Cq = I+C 2(i+ R,}"r-0) when C 2 is being discharged. R,,,- "equivalent resistance of the
T ; 7

pass transistor when transmitting logic 1". Rp,,,-.o : equivalent resistance of the pass transis-

tor when transmitting logic *00. We can transform the primitive 5 circuit, according to the

Elmore equivalent capacitance concept with some modification. to the primitive 3 of the delay

operator as shown in Figure 3.14. Here C, = C(I+ C x j....-p__) when C 2 being

charged up. and C,, =C 2 (1+ C 2 when C 2 being discharged.
(G l+ C"2) RPa, -0

./

V.,'d

V,1

J _
-O.Olpf

gnd gnd

Figure 3.8. Primitive 1 of the delay operator.

.'

39

Ov

gnd

Figure 3.9. Primitive 2 of the delay operator.

VDC

Vi. C 0.Opf

gnd

Figure 3. 10. Primitive 3 of the delay operator.

40

vi

-,- Vdd

Von -, C 2;
J i

.55v

:i - C , _T

gnd gnd gnd

Figure 3.11. Primitive 4 of the delay operator.

Via

~Ceq

gnd gnd

Figure 3.12. Equivalent circuit of primitive 4 of the delay operator.

',

I,.

.5

41

VDC

q vim

VC, - 5v L 2

gnd gnd gnd

Figure 3.13. Primitive 5 of the delay operator.

3-3.& Dynamic Windowing Relaxation Algorithm

We review the use of a special windowing technique to simulate those blocks within a

strongly connected component (SCC). A transition interval for a node is the time interval dur-

ing which the node is in the intermediate state u. The entire time interval (0. t!) is parti-

tioned into windows by taking the initial and final times of each transition interval I as the

VDC

Ceq
Vt,'

gnd

Figure 3.14. Equivalent circuit of primitive 5 of the delay operator.

42

boundaries of the windows. Associated with each transition interval I for a node nt is a

fanout list of blocks. The main idea is to use the windowing technique in the waveform relax-

* . ation procedure as suggested in (Whi 84]. wherein it is shown that the number of iterations is

exponentially proportional to the size of the time interval of simulation. This algorithm splits

the entire time interval into windows such that all pairs of signal transitions take place entirely

within one of these windows. This is achieved by maintaining a sequential list of time inter-

vals which is dynamically updated by the inclusion of the transition intervals at the output

nodes of the block as the algorithm progresses. It is event-driven. i.e.. only those blocks that

are active in a window are processed during that window and the fanouts of the output nodes

of these blocks are scheduled for processing in the future. We require no a priori ordering of

blocks within an SCC because of event-driven property.

3.3.6. Time Scaling

In this section we show how we can compute the delay values for nonstandard primitives

from the delay tables for standard primitive computed in the previous section. For any primi-

tive 1 . where i - 1. 2. 3. we can write the first-order differential equation for the output

waveform in the simplified form:

dVo (t) - _) V,1(t

where

,' = RD CL . RD : equivalent resistance of the driver block.

T2 = o'3 = FI s, CL . RP.8,, : equivalent resistance of the pass block and CL : load capaci-A

tance.

Each pass transistor is characterized by two resistance tables, one is used when the transistor is

transmitting logic 0 and one is used when it is transmitting logic "1.

Let g, (4,) denote the delay functions tabulated as a function of input slew rate ,. for

_,-,-,,

43

j standard primitive a. where i - 1. 2. or 3.

Now we can compute the delay for the nonstandard primitives from those computed for stan-

dard primitives as follows.

1) Compute the scaling factor a = o /Co,. where ao, is the RC time constant for the

standard primitive i.

2) If i - 1. 2. or 3. then obtain Ato = agi (A /a). for o - 1, 2.

3.4. Critical Path Evaluation

Let G (V . E) be a directed graph representing the given partitioned CMOS circuit

(I (N, M . Z). Suppose the strongly connected components of G have been identified and col-

lapsed into single vertices thereby resulting in an acyclic condensation digraph C. Each vertex

in C could now correspond to a set of blocks in a feedback-loop in Ql. Since G is acyclic.

there exists a topological ordering on its vertices. This would induce a corresponding ordering

on the blocks in E. We will refer to this ordering as a topological ordering on the blocks of Z.

For each circuit node n E N we define the earliest start time, E (n) [Pre 77] as follows:

(1) Initially, set E (n)-0. for each node n in the graph.

(2) Scan the blocks in 1: in forward topological order. Let (I, denote the block currently

under consideration. For each pair of nodes j EJVP((I,) and k EOUT(fl,) set

E (k)-max(E (k). [E ()+d (j . k)11. where d (j k) is the delay-time from input-

node j to output-node k through block (I,.

We also define the latest completion time, L (n), for each circuit node n E.V as follows:

(1) Initially set L (n)-E (n). for all nodes n in the graph.

% .

A%

44

(2) Scan the blocks in E in reverse topological order. Let f0, denote the block currently

under consideration. For each pair of nodes j eJNP(n,) and k EOlUT(fls) set

L (j)-minlL (j). L (k)-d (j. k)]1.

A node n in the circuit is said to be criticalif E (n)=L (n). A block is said to be a criti-

cal block if it has both a critical input node and a critical output node. A critical path in the

graph G is defined to be a directed path of maximal length consisting entirely of vertices

corresponding to critical blocks in the circuit.

3.5. Timing Analyzer

-S' In general. the data structure and delay computation algorithms are the same as in the
S..

S. timing simulator. The difference is that a timing analyzer uses an input independent approach:

both its strength and its weakness stem from this difference. In simulation. a specific set of

input signals is applied to a circuit. The simulator predicts the functional behavior of the cir-

,K cuit so that the designer can see if it matches the desired behavior. In timing analysis. the only

goal is to see if the circuit meets its timing specifications: since the function of the circuit is not

* being tested. specific signal values are largely irrelevant. The timing verifier attempts to find a

combination of values that results in the worst possible timing behavior. The input-

independent approach provides the main advantage of timing verification over simulation. By

considering all possible signal values at once. a timing analyzer is guaranteed to locate any per-

formance bottlenecks in a single run. In contrast. the effectiveness of a set of simulations

depends on the selection of input data: pathological conditions may be undetected if they are

not triggered by the particular inputs fed to the simulator. The value-independent approach is

also responsible for the main difficulty in timing verification. When a timing verifier ignores

specific signal values, it may report critical paths that can never occur under real operating con-

ditions. These false paths tend to camouflage the real problem areas. In practice. all timing

verifiers include a few mechanisms that designers can use to restrict the range of values

'A.., e, -A. 5'

!'-

T45

considered by the program. JADE provides a mechanism called i/o specification. which is used

to handle pass transistor structures by controlling information flow through switches.

The major advantage of combining the timing simulator and the timing analyzer is that

all worst-case critical paths can be uncovered from timing analysis and the accurate calculation

of delay can be provided by the simulator with the corresponding input vector. The data struc-

ture. partitioning. and ordering algorithms are identical for both timing simulation and timing

4analysis. The worst-case equivalent block resistance and input slew rate are always assumed

for the timing analysis purpose to get the worst-case critical paths. In the timing analyzer theC.

pass block delay is calculated by using the Elmore RC time constant. while in the timing

simulator the delay is calculated from table-lookup and time scaling techniques.

3.& Examples

Several representative examples have been simulated in JADE to show the applicability

and the accuracy of the algorithm. The first example is an exclusive-nor (XNOR) circuit shown

in Figure 3.15. The circuit is treated as a pass block since it connects to no power supply node

and no ground node. The nodes voltage waveforms are shown in Figure 3.18 for comparison.

The dash line waveforms are from JADE and the solid line waveforms are from SPICE2. The

second example is a D-latch circuit shown in Figure 3.16. The circuit contains a feedback loop.

The strongly connected components are simulated using the dynamic windowing relaxation

algorithm. The results from both the SPICE2 and the JADE simulation are shown in Figure

3.19. The third example is a 4-bit adder shown in Figure 3.17. The circuit is defined hierarchi-

cally. The 4-bit adder is composed of two 2-bit adders. and the 2-bit adder is composed of two

1-bit adders. The 1-bit adder is defined by nine NAND gates. In this example we show that

JADE can handle the hierarchical structure without flattening and takes advantage of the

hierarchical approach. The four summation bits and the carry-out bit waveforms are shown in

-M 1.r

46

Figure 3.20. The execution time and memory usage are shown in Table 3.1.

'ED

c a

E b

Figure 3.15. XNOR circuit.

~Clock

4...

I.Q

Figure 3.16. D-latch circuit.

' -. .- -. - -A . -.
"

. . - ° A .%

47

P whole circuit

2-i _ ____

~ 2-biE adder

-bit adder

I-bitade

Figure 3.17. 4-bit adder block structure.

5..

48

Cin Gout

A?

Figure 3.17. Continued.

A?

XNOR D-Latch Adder(4-bit)
AS

- transisors 4 18 142

SPICE2(second) 70 320 5469

JADE(second) 10 24 60

Memory Space(KB) 9 13 31

Table 3.1. Execution time and memory usage performance.

3.7. Summary

What we have presented here is a new type of timing simulation. With regard to perfor-

mance. JADE compares very favorably to other attempts at timing simulation such as [Nom

82]. [Tam 83]. [Ter 83]. [Hwa 861 in several respects. First. the hierarchical approach saves a

considerable amount of memory space. JADE is able to pinpoint critical paths. Second. a small

number of delay lookup tables and equivalent circuit transformations relieve the pre-

simulation phase workload. Finally. the frame data base and LISP environment make it corn-

patible with the expert system approach to optimizing circuit performance in the next chapter.

,A
A,

49

i

. -

h~o |

.9.

0 5 10 15 20 25 30Time (ns)
.c

.- .. Figure 3.18. XNOR circuit output waveforms.

,h ,-2

-V'.,

V.q

I 1* - ~ * .*'~

50

1!-

LL

0 5 10 15 20 25
Time (ns)

Figure 3.19. D-latch circuit output waveforms.

Ih

--1

51

0

> A

0 020 30 40 50 60
Time (ns)

Figure 3.20. 4-bit adder output waveforms.

52

CHAPTER 4.

CMOS VLSI TIMING OPTIMIZER

4.1. Introduction

The unit size or fixed ratio transistor geometries circuits produced by silicon compilers is

not appropriate for high performance VLSI design. A better timing performance can be reached

by adjusting the transistor sizes properly. The circuit optimization techniques and algorithms

appropriate for use in VLSI design should have low computational complexity. yet must be

accurate enough for high performance circuit design. While some stages of chip design can be

handled well by algorithms, special cases like circuit and clock tuning require the application of

knowledge-based expert systems [Kow 85]. If a satisfactory algorithmic solution to a problem

is known it should be used. When such a solution is not known or where a problem has many

"special cases" which dominate the run time of the algorithm. the problem is a good candidate

for an expert system based approach [Buc 841. The conventional design iterations that involve

circuit extraction, simulation. designer's check and modification are excessively tedious and

time consuming. We propose a rule-based timing optimizer using a switch-level timing simula-

tor to calculate the timing performance. iJADE combines the algorithmic solution and rule-

based expert system approach. The algorithm provides a simple first order approximation of

the proper device sizes for each transistor. The optimization rules of the expert system are then

applied to fine tune the circuit performance. The circuit is described in terms of transistors of

different types and sizes. along with the estimates of interconnect resistance and capacitance.

Before the timing optimization there will be hundreds of critical paths that are a much as a fac-

tor of two slower than the slowest path in the final design. With careful circuit design the

speed of a chip can be improved. noise can be eliminated and clock skew can be reduced to a

- ~d4PJ~* i.' ?* ~'.. 'i ,. ' 'H

I
53

tolerable level [Sho 82].

Given a circuit and its limit on the chip area A . the circuit optimizer's task is to minimize

the propagation delay of the circuit. Although power dissipation is another important perfor-

mance measure of VLSI circuits. we will assume that the constraint on power dissipation can be

represented by the constraint on the chip area of the active devices. This assumption is reason-

able since power dissipation is proportional to the acti /e chip area.

To optimize the timing performance of a circuit, we introduced a hierarchical circuit

optimizer iJADE. iJADE uses an accurate switch-level timing simulator or a switch-level.

input-independent timing analyzer to identify the worst-case critical paths. iJADE attempts to

solve timing problems by adjusting the size of the transistors or by inserting buffers for large

capacitive loads. As a closed-loop system iJADE calculates delay, searches for critical paths.

*, "and modifies the circuit iteratively until the specifications are met. iJADE is composed of fivei
parts (1) the switch-level timing simulator JADE (Lai 87a]. (2) the switch-level timing

analyzer. (3) the path delay reduction algorithms. (4) a rule-based expert system. and (5) the

frame data base. iJADE reads the circuit description with the design specifications and points

out critical paths after accurate calculation of propagation delay times. The path delay reduc-

tion algorithms and rules are then applied to optimize the timing performance. After circuit

ovtimization the timing performance is reevaluated to check whether further optimization is

necessary. This process gets repeated until the design meets the timing specifications or the

design can not be improved further.

4.2. Optimization

Several techniques have been proposed for the optimization of large circuits on VLSI

chips. Most techniques allow only a few design parameters each logic circuit. which severely

limit the number of logical circuits which can be optimized. Ideally. the timing model may use

ib,

S R*%% v~.~ 4 ...

.54

only one global parameter per logic circuit. An example of such a model is a MOSFET circuit

where all the FET gates are adjusted in proportion to a single design parameter - transistor

channel width W.

VLSI circuit optimization has gained much more importance with the advent of silicon

compilation. In fact, high performance silicon compilers must take timing into account. Prob-

ably the most common way to adjust the timing of MOSFET integrated circuits is the adjust-

ment of the FET gates (Rue 771.

Several authors have studied optimization work of this nature. General purpose optimiza-

tion packages such as DELIGHT [Nye 81] and APLSTAP [Bra 811 perform much of the work in

the optimization process. They iteratively improve the design solution as a designer would, but

by employing nonlinear optimization algorithms and choose the next solution point more accu-

rately and efficiently than a human could. The key advantage is that an optimal solution is

reached. However the optimization process tends to be computationally expensively for a

number of reasons. First. since the optimization package is general purpose in nature. it cannot

exploit properties of digital MOS logic and use algorithms which would be more problem

specific and hence potentially faster. Second. because the optimization package is isolated from

the circuit's data base. communicating solely via the simulator, there is no mechanism to access

the circuit's structural description or to embed additional information in the data base which

could assist the optimization. This hampers the application of more efficient algorithms that

would require such provisions. Third. the circuit's signal path delays must be determined

fairly accurately. this generally entails the use of a device level simulator such as SPICE2.

which is rather expensive computationally. For these three reasons. general purpose optimizers

are typically restricted to circuits with at most about thirty design parameters.

In an effort to address larger designs. some researchers have investigated more specialized

techniques (Rue 771. By using a resistive model for transistors and neglecting the changes in a

.I

55

logic gate input capacitance induced by sizing its transistors. these works were able to simplify

the optimization problem greatly. They reformulated the original problem. a minimization

subject to nonlinear constraints, as an unconstrainted minimization. This allows for much

qsimpler optimization algorithms, leading to fast convergence times. Nonetheless. the

simplifications needed to reformulate the problem seriously reduce the accuracy of both the

power minimization and the satisfaction of the delay constraints, making the approach inap-

propriate for high performance circuit design.

Other authors have aimed for fast computation times by simplifying the logic gate models

and the optimization techniques. Examples are TV [lou 83] and ANDY [Tri 86]. Both tools use

resistor models for transistors instead of the computationally expensive device level models.
J.

Heuristics. rather than nonlinear optimization algorithms guide the sizing of transistors in criti-

cal paths. In particular. TV speeds up paths by widening the transistors of slow logic gates.

while Andy uses a fixed sizing ratio from a gate when a chain drives a large capacitive load and

then reduces the speed and power consumption of gates that are not on the critical paths.

Although these approaches are computationally fast enough to be applied to large circuits, our

problem domain requires more accuracy and efficiency. The resistor model is not accurate

enough for high performance design, and the heuristic sizing rules are inexact. The heuristics

are an attempt to decouple the sizing problem to the point where individual logic cells can be

lsized independently of the bulk of the circuit. and consequently these rules take limited

account of interactions among cells and signal paths.

Timing. power consumption. and chip area are not independent. We need to do some tra-

deoff between them to make a good circuit. It is indeed necessary to increase transistor sizes

beyond the minimum size to overcome capacitive loadings from interconnection wires [Kan 81].
''-

While combinational systems are faster than synchronous systems. they are troubled by a

phenomena called race. which could result in the system assuming an error state. A

critical race occurs when a change in input causes the system to leave a stable state for

,U , , . , ,- - , . - - . - - " . . . , , - - -6

56

another stable state. with the final result depending on the way in which signals propagate

through logic gates. Critical race can sometimes be eliminated by restricting the tolerable vari-

ation in the propagation delay of the input signals.

The difference among the input arrival times of multiple input gates can cause serious

glitch problems and even logic failures. The input paths of the gates in critical paths should be

tuned such that all the inputs almost arrive at the same time. For each block in the critical

paths when the difference among each input arrival time is greater than a fraction of the block

delay. the equalize function is activated.

IF Anput_Arrival Times >c*DELA Y (BLOCK,) THEN

(equalize block,).

where c is a constant. The algorithm tunes the slowest input path and the magnitude of the

differences decides how much the scale should be increased.

4.2.1. Difficulties in Optimization

Once the critical paths of a design are known, it may not be clear how to best improve the

performance of the present circuit [Jou 83]. Difficulties typically arise for three reasons:

I. If a block early in the path is sped up. another path may become the worst path. with a

new delay just less than that of the original path.

2. If a block late in the path is sped up. the critical path may branch out near the end

before the improved block, leaving other blocks in the path with approximately the origi-

nal delay.

3. By speeding up a given block, previous blocks may be slowed down significantly due to

increased loading from the changed block, reducing the overall speedup.

** ,. .- * . - ap: . ~ ,,* ,.

4.2.2. Optimization Techniques

*: A rule-based system SOCRATES which optimizes combinatorial logic has been

presented [Coh 851. The system performs substitutions of equivalent gate configuration in

9 order to reduce the area of the implementation. The logic is optimized by performing a serious

of local transformations on the circuit. Given a critical path. there are several general circuit

optimization techniques. (Gla 84]. Due to the complexity of the problem. we consider only the

following two methods. We use the backward tuning approach to deal with the problem due to

increased loading from the changed block, and the iteration approach to handle the dynamic

a situation of critical paths.

1. Change the widths and lengths of various transistors in the schematic. This is the most

straight forward technique and has the minimum impact on the layout. The 0 ratio for a

CMOS inverter is optimized in regard to propagation delay time. independent of the size of

the successive inverter. if A is equal to the square root of the electron-hole mobility ratio

(Kan 831.

2. Insert one or more buffer stages between a high impedance source and a low impedance

load. There is an optimum number of buffer stages that can be decided by the ratio of

loading capacitance to driver gate capacitance.

4.2.3. Algorithm Approach

The switching speed of a CMOS gate is limited by the time taken to charge and discharge

the load capacitance Ci. The delay is affected by the input slew rate. the configuration of

transistors within the block, and the output load. The RC timing model has generally been

used in the transistor sizer to estimate the delay of the circuit. This allows for much simpler

optimization algorithms, leading to fast convergence times. Nonetheless. the simplifications

, needed to reformulate the problem seriously reduce the accuracy of both the power minimiza-

%"%

[.',

58

tion and the satisfaction of the delay constraints, making the approach inappropriate for high

performance circuit design. However a design truly optimized for delay time is seldom practi-

cal. This is because the silicon area increases very rapidly when the minimum delay time is

approached (Lee 84].

44

The function of the optimizer is to speed up the critical paths by tuning the transistors in

slow blocks and/or subcircuits while satisfying other constraints. The circuit starts with the

-. minimum size transistor configuration. The sizing scale is decided by a first order approximL-

tion of the RC time constant.

If TD > T ,x Then

TD Coew -ioad

'@ parassthe

Scale =a(1 +0).

Where. Tm,, is the maximum delay specified by the user and TD is the critical path delay.

Scale is the first sizing factor. C.,.-,,_o. is the new loading capacitance and C - is the

old loading capacitance. C .,... is the increased parasitic device capacitance contributed

from the ci sizing operation. The transistor sizing operation starts with the output stage of the

circuit and propagates the changed capacitance backward to the driving stage for the coming

sizing operation.

€2

4.24. Application of Knowledge Engineering" I
Knowledge based expert systems (KBES) have been applied to various fields and area both

in CAD and non-CAD [Zip 831, [Lob 84]. [DeM 85]. [Wil 851. The success or failure of

knowledge engineering techniques depends greatly on the nature of the problems to which they

*I

- --. " ' ' --- r -W -w -w - -- - - - - -

59

are applied. This section attempts to identify a number of characteristics that should be

observed before committing a problem to KBES applications [Bir 86].

1. The first and the most important criterion to consider is whether the application under

consideration has an algorithmic solution. Applications which have algorithmic solutions

will generally run slower with knowledge engineering techniques than with an algorithmic

solution. This is due to the large amounts of computational overhead in implementing

knowledge engineering techniques.

2. Most of the problems which do not have algorithmic solutions have large problem

spaces. It is virtually impossible to enumerate all possible cases and represent them in a

coherent way. Another characteristic of these problems is the lack of good evaluation

function to measure the quality of partial solutions. This is mainly due to a number of

factors that must be considered at the same time.

Often the class of difficult problems where knowledge engineering techniques are applicable

are problems where an optimal solution is not necessary. A solution that satisfies a few

parameters is sufficient.

4 .3. Rule-based Expert System
'A.

For many CAD problems. either an efficient algorithm is not known or handling Ospecial

cases makes the algorithm inefficient. In these situations rule-based expert system technology

offers a possible solution. The purpose is to build CAD systems incorporating an expert

designer's knowledge in order to cope with the growing complexity of digital system design.

The optimal algorithmic solution to the timing optimization in CMIOS VLSI is not known.

Furthermore the problem has many "special cases" which dominate the run time of the algo-

rithm. Therefore this problem becomes a good candidate for a rule-based expert system

approach. For example. the optimal width ratio of PMOST and NMOST for minimum delay is

U.

60

calculated and implemented by the algorithmic approach. while the widths of the precharge

PMOST and inverter buffer's NMOST in Domino CMOS circuits are decided by the expert sys-

tern. We combine analytic tools with a rule-based expert system to take advantage of timely

on-line information to administer the rules and to verify the actions.

iJADE is an expert system. By that we mean that it is an program designed to provide

expert-level solutions to complex circuit timing problems. The main function of the expert

system approach is to speed up paths by widening the transistors of slow blocks and/or subcir-

cuits while maintaining other constraints satisfied. There are two main parts to an expert sys-

tern: a knowledge base and an inference mechanism.

4.3.1. Knowledge Base

The knowledge base is the program's store of facts and associations it *knows" about a
1!

subject area such as electronic circuits. A critical design decision is how such knowledge is to

be represented within the program. In the program. the knowledge is represented by condi-

tional statements. or rules. of the following form [Buc 84]:

IF: There is evidence that A and B are true.

• THEN: Conclude there is evidence that C is true.

We refer to the antecedent of a rule as the premise or left-hand-side (LHS) and to the conse-

.4 quent as the action or right-hand-side (RHS).

4.3.2. Inference Mechanism

The decision as to which particular representation or control technique to use depends

highly on the type of the task. For example. the forward chain reasoning technique is one of

the general techniques that is commonly used in constructive tasks whereas backward chain

'-4 .. - .. . - - ." , ". " % , - . " .. " . . -- . "., . -. . . . -. " " " '. " .. . - . . - -. .

61

reasoning is mainly used for analysis tasks. In the case of constructive tasks the starting condi-

tions are the givens and one searches for a solution, forward chain reasoning is very appropri-

ate. In the case of analysis tasks, one starts with a solution and wants to find the initial condi-

tions which attributed to the solution. backward chain reasoning is very appropriate. Because

of the situation-action nature in the circuit design environment, forward chaining is used in the

.- inference mechanism. The application of operators to those structures in the data base that

describe the task-domain situation - to produce a modified situation - is called reasoning for-

ward. The object is to bring the situation. or problem state, forward from its initial

c"nfiguration to one satisfying a goal condition.

4.3.3. Topological Pattern Recognition for Functionality

Typical VLSI circuits are very complex systems. Accordingly, their design is directed by

a wide variety of considerations. The standard approach to mastering that complexity is to dis-

cipline the design process by adopting a number of rules that. taken together. are conductive to

correct designs. Such a set of a priori selected rules, of which geometrical design rules are one

aspect. is commonly referred to as a "methodology*. Different methodologies are better suited

to achieving different goals, but all share a basic characteristic: they help isolate the designer

from the details, allowing the design effort to be concentrated an higher level abstractions. The

feedback node of a static latch in Figure 4.1. for example. could be instantiated using the fol-

lowing expressions:

,. A i

62

(defun feedback-node (node)
(AND

(input node SCC)
(output node block)
(member block SCC))

i)

input feedback

Figure 4.1(a). Static latch.

Jl
input feedback

>1

Figure 4.1(b). 2-phase static latch.

4.3.4. When are rules useful

Since production systems support a different model of computation than the model sup-

ported by imperative programming languages. the question of when it is appropriate to use this

new model naturally arises. The general answer to this question is that production systems

p

P6

63

should be chosen when it is desirable to have the interpreter determine the order in which sub-

routines are invoked. Thus production systems are appropriate when the task to be solved has

some property that makes it difficult to write explicit subroutine calls into the code. The best

example of tasks for which this is the case are knowledge-based expert systems. Expert sys-

tems are programs that solve problems that are ordinarily solved by human experts.

a.

4.4. Optimization Rules

Knowledge bases are generally developed in several stages. First. *book knowledge" of the

problem is codified as a set of situation-action rules: interviews with experts then fill in

knowledge gaps and refine current knowledge. Then many example problems are given to the

expert system. and experts closely examine and validate the results. Often. errors are found

through the examples. and new rules are added to the system to correct the error situations.

The circuit optimization rules implemented in the expert system are listed as follows:

S(R I). Density and Power dissipation:

Let K', equal W, when similar structures are cascaded (Wes 85].

(R2). Noise-margin:

By setting IV,' / IV, = IA /A p. we can have good noise margin.

(R3. Clock skew:

If the clock signals are delayed equally before arriving at the subblocks. they will be per-

fectly synchronous. Use identical clock drivers to equalize the load so as to minimize the clock

skew

(R4) Capacitance effect:

d6

In a driver block the transistor closest to the output is the smallest. with transistors

• "'increasing in size the nearer they are to V,, The decreasing switching times are attributed to

*- .
-e-

64

the dominance of the capacitance term in the RC time constant of the gate.

(R). Input rise time:

a. If a block is driving a large load. or has a small transistors then only very slow input

rise times will affect the block's delay.

b. If a block is driving a small load. or has very large transistors. its delay will be more

sensitive to the rise time of its input.

c. Fast inputs put the gate in an RC response mode where the output waveform's switch-

ing time is governed by the gate's effective output resistance and capacitive load.

d. Slow inputs place the gate in a limited mode where the gate's gain increases the sharp-

ness of the waveform's transition.

(R6). Pass transistor:

The PMOS transistor transmits a logic '" well. and the NMOS transistor transmits a logic

"0" well.

(R7). Symmetrical VTC:

W,, Wp
If VIP - Vt. and/ ; -, -- P. we can have a symmetrical voltage transfer charac-

P

teristic.

(RS). Speed:

The minimum propagation delay occurs when W. / W = '-7([Kan 8I].

(R9). Delay:

The optimized design requires that the rise-time of the input voltage be approximately

equal to the fall-time of the input voltage [Lee 84]. j
* (RIO). TTL interface input buffer:

1

65
IN

X

While a logic TTL 0 can be considered low enough to switch the CMOS gate. a TL logic

1 (say 3.2V) is too close to the inverter threshold voltage - which is 2.5V for a balanced

inverter when Vjj - 5V - to guanntee reliable operation. Thus. when a CMOS gate is driven

,w by a TTL gate the channel width of NMOS transistor should be about five times greater than

the channel width of the PMOS transistor (Ann 86].

(R 11). TTL interface output buffer:

P Because the output swings from Vd to V,,. there is no problem in reaching the TTL

"high" and *low- logic levels. The only constraint calls for the driver to sink and source the

necessary amount of current in both logic states. We can express the channel resistance of the

MOS transistor in the linear region as:
L

Rchanel =W j',W/p Coz (Vg* - V Tn/p)

By combining channel resistance with the current constraints we have:

~ ~- = AL /P C,, (V is-V ,p)

(R12). Pass transistor:

a. If a gate is driven by PMOS pass transistors only. its PMOS block should be larger than

usual.

b. If a gate is driven by NMOS pass transistors only. its NMOS block should be larger

than usual.

(R13). Buffer:

The buffer is to be inserted when the sizes of the first stage logic gates have been increased.

The number of buffer stages is determined by the formula n 11n Cj, "-irst-sta.ge The
-Cate -mosmum -aze

merit of this operation is to reduce the capacitance loading of the driving stage and to increase

the speed of the circuit. If the logic gates of the output stage have many transistors. we could

-b

$ II 'V d ,' .. .% ' ..'N ,g . V% . ' w.'-- .. .° p... .e . .,2 ,,- . ' Ji'k.'-, v/,'J ,; -,
-

' .) €, a

66

place the buffer pairs in the output stage to reduce the transistor active area. A even number of

buffers are inserted such that there is no change in the signal polarity.

(R14). Latch:

An alternate 2-phase static latch is depicted in Figure 4.1(b). When the pass transistor

controlling signal 0 is high and 0 overlaps it due to skew. the D input and feedback signal will

"fight" to determine the new value on the input of the latch. One method of reducing this

effect is to make the feedback inverter a weak "trickle* inverter so that the input signal will

override the effect of this signal. A *trickle" inverter is constructed by using transistors with a

lower P than a regular "minimum* sized inverter.

(R15). Latch:

A nand gate latch is shown in Figure 4.2. We can obtain a sharp and symmetrical transfer

characteristic curve if the two nand gates have the same transistor sizes.

(R16). Transmission line:

To avoid reflections at the fan-out points, the current supplied by the driver and into the

transmission line must be equal (Bak 86]. The current into the transmission line is given by

1 05 o _ _ (4.1)

Since transistor is operating at the linear region, it can supply a current of

-7,

Figure 4.2. 2-nand gate latch.

%

4C - 't-4';-~&~

67

ALI = CO i[Vd VT) d .iVdi (.)

The optimal transistor sizes are obtained by setting the currents in Equations 4.1 and 4.2 equal.

W , [CC. (0. 75 Vd - V T)]-I.

P (R1 7). Special gate:

The exclusive-nor circuit shown in Figure 4.3 should have the same width for all the

transistors. and always has one output buffer to restore voltage levels.

The rule interpreter searches through all the rules one after another. This search contin-

ues until either the condition of one of the rules becomes true or a match is unavailable, at

it

a b

.e

Figure 4.3. XNOR circuit.

I1

tl : J - . -, _. -- - - - - -C. - .,...• . . .- ..

68

which point backtracking occurs and the alternatives of the last choice are tried. The back-

tracking operation is implicitly achieved by reducing the loading contributed from the blocks

not in the critical paths. The size of the transistors may be decreased if they are driven by the

blocks not in the critical paths. Two side benefits of this operation are to reduce the power con-

sumption in the non-critical paths and to equalize input arrival times.

4.5. Experimental Results

'4.

.4. Several circuits have been optimized by r'inning iJADE. Two examples are presented

below. The first example is a chain of four inverters. The optimum scaling ratio between two

neighboring stages for the minimum delay is e [Mea 80]. (Gla 85]. The output loading capaci-

tance CL is set such that the size ratio between the two succeeding inverters in the chain is e:

CL = C9 *eIV .where C, is the gate capacitance of the first inverter and N is the number of

stages in the inverter chain. In 2 j.m CMOS technology the minimum size of the first stage

transistor is set to be 4 um. The rise and fall delay of the inverter chain with the scaling fac-

tor of e are 3.6ns. respectively. The total active area calculated by summing transistor areas in

each stage of the inverter chain is 575Mm 2 . A comparison with the optimization result from

JADE shows that the delay time can be kept the same by consuming only 292/m 2 of active

* area. The rise delay of the inverter chain sized by iJADE is 3.6ns and the fall delay is 3.8ns.

4.. The PMOST sizes in the inverter chain are (4. 8. 20. 51) Aim and NMOST sizes are (4. 6. 15.

38) Atm . respectively.

The second example is a Domino CMIOS 6-input AND gate shown in Figure 4.4. Dynamic

CMOS logic circuits are now an integral part of CMOS VLSI technology. The reason for this

wide acceptance is that the circuit is compatible with any CMOS processing technology and the

circuit is fast since only NMOS transistors determine the delay When many dynamic CMOS

gates are cascaded to make a Domino CMOS configuration the circuit is capable of executing

9 '.

06 ~~~~~ ~ ~ ~ . Wb%

69

I

Figure 4.4. Four stage inverter chain.

many data path operations of a microprocessor. We apply the scaling technique presented in

[Sho 85] to speed up the circuit and to save some of the active device area. The size of the

transistors from ground to output are (69. 60. 53, 46. 41. 36. 31) Am . respectively. The size of

the PMOS precharge transistor is 60 Am. while the sizes for the output buffer being 53 Am for

PMOST and 8 Am for the NMOST. The propagation delay tplh is 2.2 ns and tpla which res-

tricted by the clock period is 8.2 ns

The third example is a 4-bit ALU with 142 transistors. The performance of the circuit as

manufactured in industry is compared with that optimized by iJADE. The output waveform

A: of the circuit optimized by iJADE shows fewer glitches in the SLATE simulation (Yan 80]. The

propagation delay times as determined by the falling edge of the waveforms are smaller in the

iJADE-produced circuit configuration. The active area used in iJADE's circuit is only 1750

r* Am as compared wi~h 3118 Am 2 in the industry circuit. The output waveforms with three

different transistor sizes for the 4-bit ALU circuit (dot: minimum size. dash: sized in industry.

solid: sized by iJADE) are shown in Figure 4.6(c). It should be noted that the circuit with

minimum transistor width will produce a large glitch that causes incorrect logic operations.

The execution time performance of iJADE for the above examples is listed in Table 4.1.

The results show that iJADE performs CMOS circuit optimization competitively or even

better than the design from industry in terms of glitch avoidance, propagation delay time. and

chip area. Also the hierarchical approach saves a lot of memory space and computation time.

The overall execution time appears to grow linearly with the number of transistors.

SJ

-

70
i

Clock

C,

Gnd

* I

Gnd I

Figure 4.5. Dynamic domino CNMOS circuit. I

11

71

I

I-

U!

| LL: I A LLAl A~LU Il l

Figure 4.6(a). 4-bit ALU circuit.

Ur

U,

''%

72

NI

Figure 4.6(b). ALU1 circuit.

Inverter Chain Domino CMOS 4-bit ALU

transistors a 10 142

iterations 2 2 3

time(seconds) 157 177 823

v.J Table 4.1. The execution time performance of iJADE.

I!

.o

73

b4.6. Summary

A design aid system iJADE has been developed for high performance CIMOS VLSI circuit

generation. It has four novel features. First. it combines analytic tools with a rule-based

I expert system to exploit timely on-line information to administer the rules and to verify the

actions. iJADE is a closed loop performance evaluation and design parameter refinement sys-

tem. Secondly. iJADE contains an accurate switch-level timing simulator that detects the

latches. traces the clock paths and simulates the accurate signal waveform of each node in the

circuit for tuning a synchronous circuit to satisfy the clock timing constraints. Thirdly. iJADE

optimizes the circuit performance by tuning the critical paths found by the worst-case timing

analyzer. Lastly. the hierarchical structure for both circuit and programming saves a lot of

memory. speeds up the calculation and can define the potential problem subcircuit clearly.

W. Experimental results on a 4-bit ALU and register paths show that iJADE-optimized CMOS cir-

cuits perform competitively or even better than hand crafted designs from industry in terms of

glitch avoidance, propagation delay time. and chip area.

.

S.

74

.11

.5.

Sm

0 20 40 60 80
Time (ns)

Figure 4.6(c). 4-bit ALL: output waveforms.

.11

i

,

,,V . .. ,....K . , ,, ..- ,..,.. ;... < : :... ..p . -. ,- : .;::;.-.: f-:.J-,1 . .,"-/.: V .T',.d.; % 9. ' ,

CHAPTER 5.

TIMING ERROR CORRECTOR FOR VLSI SYNCHRONOUS CIRCUITS

5.1. Introduction

For one signal to influence another they must intersect, not unly in space. but also in time.

*Choreographing the thousands of signals in a VLSI system so that each part of the data arrives

* where it is supposed to. and when it is supposed to. is an extremely complex task. This is par-

ticularly true for high performance designs. One way to cope with this complexity is to

employ a clocking methodology. Its role is to synchronize the orderly and the controlled flow

of information in the digital system. as well as to reduce the complexity of the circuit design

I by restricting the valid logic forms. In a digital circuit, we must restore both logical values and

time. This means. we must make sure when it is valid to interpret an analog voltage waveform

as representing a logic value. As signals propagate through the network, they undergo delays

g ithat cannot be always precisely predicted. Since we need to be able to bring signals together in

time. we must develop a technique for dealing with delay uncertainties. One method. *clock-

ing,. equalizes all of the delays by making them all equally bad. Clocks are used in a digital

system to hold up a signal until it is time for it to begin to move through the next stages of

ogic Registers are used in conjunction with the clocks so that a signal can be restored at a

.,,cation untii :t is needed.

ne -.ozk puLse distribution has been a serious problem in VLSI design when logic ele-

. ,4- -,i -. mailv separated but need to be gated simultaneously [Gla 77]. Clock skews have

a -n&ir ,iming errors. and therefore. the use of precise clock waveforms has been

.... < . .* Sina,s Are traced out to get the real arrival time at each node. The latch

.. . % . . , . . , . . 2 . " - 2 . : . , ', , , , -¢ . -, % " ' . ' " ' .

76

pairs are then identified to calculate the path delays between each latch pair. Therefore. the

optimization of synchronous circuit performance is equivalent to the minimization of the criti-

cal path delay through combinational circuits.

Previous approaches [Hit 82]. [Agr 82]. [Ben 82]. [Jou 83]. [Cha 85]. [Szy 86] have only

detected the timing errors between latch pairs often using ideal clock waveforms. The simplest
1',

form of timing verification is dynamic timing analysis which consists of applying a timing

simulation model of the circuit to a large set of test vectors at a variety of clock frequencs.

Although in principle this approach can catch every timing problem. it is very expensive to

perform. Moreover. it is difficult to construct a set of test data which is guaranteed to cover all

relevant cases. Finally. a failed simulation provides little information as to why the circuit

failed.

Stati tiuing analysis attempts to avoid these problems by examining the circuit for a sin-

gle clock cycle in a way which is independent of the logic -alues at the nodes n the circuit

Most systems of this type operate by enumerating all paths het ,ern the itorage elements of the

circuit. In many cases. the number of such paths is enormous and leads to ,ong run times TV

[ou 83] and TA [Hit 82] avoid these lcng run times .v taking a PERT-rike approach)ut are

restricted to circuits that are expressed at a high enough level that their .. rcuit graphs are acv

clic within each clock phase Crs-al [(Ous 45' allows circuits &-ith ,'.'les and proides a

method of determining when each node in a .irc-it Aill respond "o an external stimulus

Lnfortunelv. no mechanism is provided fi hfecking "hat tbe ,ignais arri'e at their jestina-

tions soon enough Moreover since Crystal ,eals -with Jlock phases ndependentl'. ;t pro.,tdes

little help in dealing with signals that are in transit acrn.m phase)Vundarles

[n addition to the deficiencies listed abo.e nojne of these pre, ,ous aproache% _s pari.mu

larly well suited to repeated anal'ses mith hanged -ir'J it *r .ockinq parameters

I'I

I .. ','.. -2 . - . . " :

77

In this chapter. we introduce a new CAD tool [Lai 87c] for detecting the timing errors and

correcting them through circuit optimization techniques. The tool has been developed to speed

up the circuit and to meet the multiphase clock timing requirements. The main algorithm is:

n I Read the timing specifications and circuit file in SPICE format.

2 Calculate the parasitic capacitance contributed by the devices.

3 Trace clock paths and identzfy latches.

WHILE (data-base is modified) DOIP
4 Trace critical paths and shortest paths between latches.

5 Detect timing errors

5 1 Set-up time

5 2 Hold time

6 Correct timing errors

6 1 Clock paths

S.- $) 2 Signal criticai paths between latches

t 3 Signal shortest paths fet'.een latches

L pdate the data base

L \TIl ail specifications are satisfied)

Si IF iucce s THE\ Print iut results) ELSE (print out suggestions)

T,) detec" iming errors. the hold time and the set-up time of each latch are checked with

ac.jrate %iignai).a'.ef rms T) .orrect the timing errors. two procedures are used. (1) resizing

ransistor" n (xk path% and 2 resizing transistors in critical and shortest signal paths.

5.2. Path -. nalysis

' imulation 1 logic netwrorks uming ;ow<; states and accurate timing information has long

we, .ne Ai 'he stAndard rois t.r design .erification In a detailed simulation of this type.

',

78

functional and timing specifications of the devices are calculated. and delays through intercon-

nections are used to verify both correct functional behavior and correct timing behavior. The

relative importance of function and timing varies with the type of system being designed. In

high performance systems. timing verification is very important and must be done throughout

most of the design process to guide design decisions. Detailed simulation can be used for this

purpose. but it suffers from one major disadvantage - incompleteness. Simulation must be

driven by specific test cases. Due to the large number of input combinations, however, it is

impossible to simulate all cases. Any problem that is not exercised by the chosen test cases is

likely to remain hidden until the late stages of the development process where a fix can be very

expensive or might lead to reduced system performance.

We use the timing analysis approach discussed in Section 3.5. instead of simulation, to

overcome the incompleteness problem. The delay modeling is based on the time-scaling method

which depends on the input slew rate. loading capacitance. and the circuit structure. The tim-

ing analyzer uses the slowest slew rate of all the input signals and the worst-case block resis-

tance to get the worst-case propagation delay times. The strongly connected components (SCC)

are detected and treated specially in the timing analysis. The block with the earlist arrival

* input from outside of the SCC is analyzed first. The rest are analyzed in descending fanout

order. i I
The previously described techniques can be grouped into two main categories: path

enumeration techniques and block oriented analysis techniques. Path enumeration techniques

are characterized by programs which start at certain "start points.. and trace back through the

blocks feeding the start points until a terminal point is reached. At this stage, the information

is complete and the data for the path can be accumulated. Data accumulation can be done by

simply adding up the delays. But path enumeration techniques tend to have long running times

since the number of paths through a graph grows exponentially with the size of the graph.

Block oriented analysis techniques are characterized by programs which start with signals at

I%N '_.. -. ** 4' -. '.

179

storage element outputs. The blocks, which these signals feed. are then processed to find the

latest and/or the earliest time at which the signal could propagate through them. The blocks

are processed so that the times at the output of each block is only be calculated once. Block

oriented analysis techniques tend to run much faster than enumerative path analysis tech-

niques.

Here. we adopt the critical path approach of the block analysis techniques. because of the

efficiency and the simplicity of the method. The critical path algorithm is executed in the

corrt ponding acyclic graph with the SCC shrunk to a single node. The complexity of the algo-

rithm is 0 (E + V). where E and V are the number of edges and vertices of the correspond-

ing acyclic graph. respectively. Since the delay analysis for the most part ignores function.

some paths may be flagged as having timing problems when they. in fact. do not. We suggest

that timing analysis only be used to find the worst-case critical paths. The real timing infor-

mation should be found using a timing simulator with the appropriate input vectors.

5.2.1. Clock Path Tracing and Latch Identification

The clock paths are traced hierarchically. and switch-level timing simulation is done for
V-.

each node along the paths. The clock paths can contain resistors and inverter gates. Only the

initial nodes of the clock paths need to be specified. since the program can automatically trace

the clock paths. A latch is detected when an SCC is connected to a clock node either directly or

indirectly through logic gates. The function that defines a latch is as follows:

Whether an SCC with a triggering clock node is a latch or a flip-flop, depends on the triggering

signal.

There are two types of latches normally used in digital circuits: (1) edge-triggered and (2)

"S level-sensitive. An edge-triggered latch is only sensitive to a particular edge (rising or falling)

d ' ,

80

(defun latch (module)
(AND

(member module SCC)
(OR

(input clock module)
(AND

(input node module)
(output node block)
(input clock blcck))

)
).

of the clock signal. The signal at the input must be stable before this clock edge arrives at the

latch. irrespective of when the data signal arrives at the input, it propagates to the output at

the triggering edge. Every edge-triggered latch is considered a destination of a path leading to

it. On the other hand. a level-sensitive latch is sensitive to both rising and falling edges of the

clock. One edge opens the latch so that the data can propagate through it. while the other edge

closes the latch. The content of a level-sensitive latch. at the closing edge. is retained in the

latch while it is closed. The signal can appear at the output of a level-sensitive latch at any

time while the latch is open. The delay of a path leading into a level-sensitive latch can be

analyzed as follows:

(I) If the signal arrives at the latch after the closing edge. then it must wait until the next

opening edge.

(2) If the signal arrives before the opening edge. then it must wait until the opening edge.

(3) If the signal arrives between the opening and the closing edges, then it continues to pro-

pagate as if the latch were only a flip-flop.

It is worth noting that an edge-triggered latch can be analyzed in exactly the same manner. if

% we assume that its opening and closing edges occur simultaneously

S ~ ~ *3~~~S S

81

562.2. Critical Paths between Latches

For simplification of the path search and tuning algorithms, only the critical paths

between latches are traced. The critical path algorithm is the same u in [Lai 87a]. except here

U we start at the slowest arrival input node of each latch and end at a latch. Critical paths are

found between a latch pair. Timing edges and clock pulse widths are found through simula-

- tion. The sequential circuit clock taming relation is depicted in Figure 5. 1

01
5.3. Timing Error Detection

Generally. there are two kinds of timing errors. the set-up time violation and the hold

time violation. The user can define these two values to check timing errors. The default hold

tme value as set to the internal propagation delay of the latch

5.1.. Clock %% aveform

The distribution of clock signals is a difficult problem and often gets complicated further

,hen multiphase clock signals must be derived from the master lock alth rrecie timing rela-

:ionship% To detect timing errors due to the J!ock %ke%% timing simulation is. used for .lock

path .Lircuit analysis

"~.5.3.2. Set-up and Hold Time

The jet-up time T., is the time inter,.al alloed for the inputs to stabilize before the.,
.06
.4 are clocked into the latch The ho44 tamer T, is the time inter-.a after the .lock transition has

occurred during -which the ;nputs must be held stabie rhe timing error aigorithms in 'Ben 'i-1

[Cha 35] were modified u check the set-up time and 'he hold time expl.tt,' The pr gram aiu'

chcks to insure that the clock pulse duration is greater than the .nternai -ropalation Jeia,.)I

.%

82

-AI

* -- -- tat c/h -.-- - w. latch21=

Clock

Figure 5 1 .Sequemtil clrcunt clock tiingn relation.

4

S a *~S

83

the latch using the following algorithm.

FOR each latch DO BEGIN

WHILE T1 < TMAX DO BEGIN

TX T 1+TPD,:

WHILE T 2 < TX DO T 2 :- T 2 +Tperiod2;

(perform paths check)

IF (T I + CriPath_Delay + SetUp_Time) > T 2 THEN SetUpTime_Error:

IF (TI + Short_Path_Delay + Tpersodl) < (T 2 + Hold_Time) THEN

Hold_Time_Error:

(0 when signal stream through latch 2 in mid-phase (used as Flip-Flop) a)

IF (T,+TPD1 * ShortPathDelay) < (T 2 + HoldTime) THEN

HoldTimeError:

T 1:= T 1+ Tperiod 1:

END-
p

END:

S Here T I and T., are the triggered times of latch I and latch ,. respectively TMAX is a user-

defined maximum time boundary. TPD Iis the propagation delay of latch 1. Cri PathDelay

is the critical path delay from latch i to latch,. ShortPathDelay is the shortest path delay

from latch I to latch . When the signals stream through the latches in mid-phase. the latches

are acting as flip-fops. In the case of flip-flops. we only have to check the hold time condition

for the shortest paths. The criterion is that the hold time plus the clock skew must be less than

the sum of TPD, and Short_PathDelay. A 10% error margin from timing analysis has been

included to detect a possible hidden timing error coming from the deviation of the delay esti-

mation. The clock and data timing relation is depicted in Figure 5 2

b'

84

cLKI

T,

~CLK 2

I T1 + cp-delay + set-up

Data

T cp-delay T I + cp-delay + period 1

Figure 5.2. Clock and data timing relation.

5.-L Timing Error Correction

As mentioned earier. it is important to minimize the clock skew (Bak 861. Also. all criti-

cal paths should be optimized to solve timing problems. Here. we derive the r boundary range

from the timing error checking algorithm.

Case 1 r<TPD

We want T,= T i+ Tperiod I ,r. such that. the following two inequalities must be satisfied:

Cr_ Path_Delay +Set_ ULp_Time < Tperiod I+r (5.1)

r <Short_ Path-Delay -Hold_ Time. (5.2)

From Equations 5 1 and 5 2 we get

Cri_Path_Delay +Set_ Up - Tperiod <r< ShortPath_ Delay -Hold_ Time. 15 3)

Cae 2: r> TPD,

"
_ . . % . *, *, % -*'IV ' % -' -" " *.o% . % % ,% .% o.o

We want T 2 T +7. such that. the following two inequalities must be satisfied:

V Cri PathDelay +Set Up-Time <1' (5.4)

r < ShortPathDelay -Hold_ Time + Tperiod1. (5.5)

From Equations 5.4 and 5.5 we get

CriPath_Delay +Set_ Up < r < ShortPathDelay -Hold_ Time + Tperiod 1 . (5.6)

The r value must be within a boundary to satisfy the timing requirement. Let a

represent the expression CriPathDelay +Set_ Up and b represent the expression

Short_PathDelay -Hold_ Time + Tperiod 1. We construct a table to describe the 6 possi-

bilities of the permutations and appropriate adjusting sequences to get the relationship in Table

5.1.

inequality I first action goal second action goal

a <,r<b null null

Ia +a <b<,r b T 27-a

r"<a <b al , 2T-b rT

r < b < a a I 2r-a bT 2a --f

b <a <r bT 2,r-a al 2b-r

b <r<a a 2b--r bT 2a..f

Table 5 1. Clock and path delay relationship.

a..

h -r ,¢, [_' " :r > d "-/

i . ,i; - - - -- -. r r rr: rr " '" ' " 'r - - - - - - - -

86

5.4.1. Clock Path Speedup

The most effective method for correcting timing errors is to speed up the clock path while

equalizing the loads of the various clock drivers, such that. the clock skew is reduced. The

clock paths are tuned backwards starting with the sizing of the last-stage transistors. The

changes in capacitance loading after resizing are propagated to the driving blocks for further

tuning [Lai 87b]. Only the first clock of the latch pair is tuned each time. so that the latter

stage tuning will not affect the previous results, see Figure 5.3. or it would have the same

amount of influence on the clock delays but the clock skew kept the same.

5.4.2. Critical Paths and Shortest Paths

When the clock paths have been sped up. but still fail to remove the timing error. the pro-

pagation delay times of critical paths and shortest paths are then adjusted according to the type

of the errors. In this section, we consider two frequently occurring problems having to do with

paths between vertices. In what follows, let G be a directed graph. The graph. G . which has

the same vertex set as G . but has an edge from v to w if and only if there is a path from t to

u Ln G is called the transitive closure of G (Aho 741. A problem closely related to finding

the transitive closure of a graph is the shortert path problem Associated with each edge e of

G is a nonnegative delay d (e). The path delay is defined to be the sum of the delays of the

Da tapat h
L 0 0 L % 2-

(LK CLK_, CL K,, CLK
,% Clock path

7! Figure 5 3 Cock tuning strategy

p.,*-. -. '. - ".~ *- .- - "- . - "- " - - ' ..- . . .-.- .--. --

edges in the path. The shortest path problem is to find for each ordered pair of vertices v u)

the lowest delay of any path from v to w. Consider a directed graph G - 1 E). where

S=(v . v 2 v.). Let d(v, . v,) be the delay of edge (v, . v,). if one exists. and a other-

wise. Compute Dj for all 141 n, 1 (n. and Ok 4 n The intention is that

CIA: should be the shortest path from v, to v, which does not pass through any vertex higher

than vk. The algorithm is as follows.

begin

for i4 .3' 4n do C, 2 - d(u, v,)

fork -I until n do

for 14i.j <n do

"[C ,k .--A, I.V (C,k - . C,k + + C 1):

end.

The sizes of the transistors in the critical paths are flagged when there is a

SetupTiming.Error. The shortest path is considered instead for HoldTimingError.

Reducing the propagation delay between latches can reduce the clock period and hence increase

the circuit speed performance. All the blocks that belong to critical paths. but not to shortest

paths. are tuned for speedup. The sizes of transistors are adjusted according to their loading

capacitance. The side effect of this backward tuning can reduce the variation in the gate propa-

gation delay for the combinational circuit between latches which decreases the probability of

crvtcal races In the first step. tuning may increase the propagation delay of the shortest path

If the Hold-T imng..Error still exists, then the driven block of the shortest path is flagged to

%" tncrease the delav times of the shortest path

l.

a..
88

5.4.-3. Clock Pulse Width

The clock period must be long enough to permit the effect of any input change to pro-

pagate .o. and stabilize at. the inputs of the latch before the occurrence of the clock pulse. The

maximum -alue of the propagation delay time (often equal to twice the typical value) must be

used for each gate in the logic chain when calculating the minimum clock period. A last resort

-o)'ercome the timing problem is to increase the clock pulse width and the clock period. The

program prints out the minimum clock period required if it can not successfully tune the cir-

cuit under the current clock timing condition.

5.5. Experimental Results and Summary

A~ CNMOS Jiata path circuit *.4ith 160 transistors. sho\.,n in Figure 5 4. 'was tuned by the

"he g am

0' . t~'~e "rg~a , ,r~t-.ae Jei'. ',ime Jt~e rrpu" rnd , :pul a, .i % i nJ 'C .e"

,I

"(\ "-1 .

w-a

-a -

a..

01

a. F

ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAS F LAI
JUL 87 U ILU-ENG-87-2244 NOB814-84-C-8149

UNCLASSIFIED F/G 9/1 UL

7 m h h hh69RUE-A ED ICITOTMIAIN E EERO LI() 21

* 40

M N (YRESOLUTION 't~ CHART

-4w

ALI IN .

89

X61

Figure 5.4(b). Path circuit.

transistor width was 640 / m. The program took 7 minutes to reduce the worst-case delay

time to 8.5 via, with a new total transistor width of 845 / m. The maximum propagation

delay time between latches was reduced from 5,1 via to 3.8 n. The program is truly auto-

nomous and does not require any human intervention. In comparison with a manual approach.

' ' the design turn around time can be shortened by a few orders of magnitude.

~In this chapter we have presented a timing error correction method through transistor

resizing techniques. By minimizing the clock skew. the propagation delay time of a path

*- decreases, permitting a higher frequency of operation and improving the data throughput of the

~overall system. Critical paths and shortest paths between each latch pair are tuned to meet the

set-up time and the hold time requirements.

1X

90

CHAPTER 6.

CONCLUSIONS AND FUTURE WORK

A design aid system, iJADE. has been developed for high performance CMOS VLSI circuit

generation. It has four novel features. First. it combines the analytic tools with a rule-based

expert system to take advantage of timely on-line information to administer the rules and to

verify the actions. iJADE is a closed loop performance evaluation and design parameter

refinement system. The second novelty is that iJADE can detect the latches, trace the clock

paths. and accurately simulate the voltage waveforms in the circuit and tune synchronous cir-

cuits to satisfy the clock timing constraints. The third novelty is that iJADE optimizes the cir-

cuit performance by tuning the critical paths found by the worst-case timing analyzer. The

fourth novelty is that the hierarchical structure for both circuit and programming saves a lot

of memory, speeds up calculations, and can define the potential problem subcircuit clearly.

Experimental results on a 4-bit ALU and register paths show that iJADE-optimized CMOS cir-

cuits perform competitively, or even better. in terms of glitch avoidance, propagation delay

time. and chip area.

Power dissipation is another important concern with the performance of very large-scale

circuits. It becomes increasingly more important to reduce the power dissipation as the number

of devices in VLSI circuits increases (Kan 86]. Beginning early with the chip floor plan. it

would be helpful to consider laying the power and ground wires on a VLSI chip. This will pro-

vide the designers the chance to estimate the power distribution at the pre-layout stage. Obser-

vation of the hot spots on the whole chip will be helpful for the designers to achieve better

thermal immunity for the circuits. There are two components that establish the amount of

power dissipated in a CMOS circuit. They are:

&Nms

91

1 Static dissipation - due to leakage current.

2 Dynamic dissipation - due to:

a. switching transient current

There b. charging and discharging of load capacitances.

There is some small static dissipation due to reverse bias leakage current between diffusion

regions and the substrate. The static power dissipation is the product of the device leakage

current and the supply voltage. The dynamic dissipation can be modeled by assuming the rise

and the fall time of the step input is much less than the repetition period.

We are also studying methods of applying the optimization data to other aspects of circuit

design. For example. designers frequently face situations where a speed specification on a cir-

cuit path cannot be met. no matter how the circuit's transistors are sized. In such cases.

designers often try to rearrange interconnect wires and module placements to reduce the capaci-

tive loading on critical nodes. hoping to thereby meet the speed requirement. The design optim-

ization techniques can be extended to the logical-level. In the logical-level, the designer has to

make intelligent judgements for each logical path about the proper logic pattern and the proper

3 number of stages.

P M

92

APPENDIX A.

iJADE VERSION IA USER'S GUIDE

iJADE is a multiple functional program that optimizes VLSI CMOS digital circuits. Cir-

cuits may contain resistors, capacitors. independent voltage sources. and NIOSFET's. iJADE has

built-in models for the device capacitance. iJADE can simulate or analyze the circuit at the

switch-level to identify the critical paths. For optimization iJADE uses both algorithms and a

rule-based expert system. The primitive cells delay data are stored in the file data.I. The

technology dependent data are stored in the file teck.1.

To run the program. type

UiADE input-file output-file {option}

where input-file is the input file name. and output-file is the output file name.

There are several options available:

s: simulation

a: analysis

m: combinational

c: sequential clocked

o: optimization

p: critical path generation.

s" and a" are mutually exclusive and so are "m" and "c".

o" also generates the list of critical paths.

1%

- RJ p .Y,%

93

A.I. Frame Data-base

Schematic frames are those frames which hold the information about the circuit elements

as they are initially entered and further classified by the program. Just below the root "whole

there are eleven frames: transistor, capacitor. resistor. input, model, node. subcircuit.

subcircuit-call. block, latch, and strongly connected component(SCC).

Transistor frame stores the structure and property of a transistor. It includes the follow-

ing slots: ako (a-kind-of). drain. gate. source. substrate. model-card-name. length. width.

drain-area. source-area. drain-perimeter. source-perimeter, and beta (W/L).

Node frame includes the following slots: ako. status. neighbor. gate-of. lump-capacitance.

external-capacitance. load-capacitance. capacitor. resistor. fanin-block. fanout-block, initial-

condition. block-p. and block-n. Where. staius represents the strength of the node such as

input, pull-up. pre-charge, normal. Neighbor is a DC connected relation. Its data structure is

as follows: (connected-through-device. neighboring-node). The connected-through-device can

be a resistor or a transistor. Gate-of is the transistor list with the node as its gate. Lump-

3 capacitance is the total lumped capacitance between the node and ground. External-capacitance

is the total lumped capacitance between the node and ground excluding the parasitic capacitance

contributed from the transistor. Load-capacitance is the loading capacitance from upper level.

Block-p is the PMOS driving block and block-n is the NMOS driving block.

Circuit frame includes the following slots: ako. model-card. delay-specification, area-

specification. maximum-area. mos. nodes. gate-set. capacitor. resistor. port. input-node, input-

name. output-node. pull-up, pass-transistor. subcircuit-call. called-by. block. scc. latch. and

ordering.

Capacitor frame includes the following slots: ako. c+. c-. and farad.

IJ

94

Resistor frame includes the following slots: ako. r+. r-. and ohm.

Subcircuit-call frame includes the following slots: ako. port. call, edge-to, edge-from.

number. lowlink. and label. Where. number and lowlink are used in the SCC detecting algo-

rithm. Label value represents the topological ordering of the device.

Block frame includes the following slots: ako. node-set, input-node, output-node. mos.

resistor, capacitor. block-type, edge-to edge-from. number. lowlink. visited, and label.

Strongly connected component frame includes the following slots: ako. component.

input-node. output-node. edge-to. edge-from. visited. label. and status.

Latch frame includes the following slots: ako. clock-node. critical-f. critical-r. shortest-r.

shortest-f. internal-delay.

Input frame includes the following slots. ako. v+. v-. source-type. waveform, sequence.

and interval.

Model frame includes the following slots: ako. type. Id. vto. xj. tox. nsub. and mu.

A2. Input Format

The circuit format is generally the same as in SPICE. But the following information must

be provided as well. iJADE accepts most of the SPICE format and ignores the others that it can

not recognize. Design specification token always starts with a "*" such that it will be processed

by iJADE but ignored by SPICE. Subcircuit must be previously defined before it can be called.

Several tokens starting with * have special meanings in JADE so that the same file can be run

in both SPICE and iJADE.

1. Input nodes must be specified.

*input t t , j

I .

95

2. Output nodes must be specified.

t output 01. O O

3. A subcircuit must be defined before it can be called.

4. Subcircuit's port function must be specified: i (input) / o (output).

.subckt inverter 1 2 99

*i/o i 0 i

5. Current sources can not be handled at present. The current card is ignored in iJADE.

6. All the clock nodes must be defined.

'clock 99

7. The setup time. T.,. is the time interval allowed for the inputs to stablize before they

are clocked into the flip-flop.

*set-up 3ns

8. The hold time. Th . is the time interval after the clock transition has occurred during

which the inputs must be held stable.

*hold 3ns

9. For the worst-case timing analysis, the input slew rate may be specified by the user. The

default value is 1 ns.

*input-slew l.Sns

10. The characteristic impedance of the transmission line can be specified so that JADE can

determine the transistor size of the output driver.

*z 100

11. No floating capacitors are allowed.

A

96

12. The maximum transistor can be specified.

*max-width 200u

13. The upper bound on total power consumption is set in terms of the maximum total

channel area allowed.

*total-width 3000u

14. TTL level signal input nodes should be specified to set the width ratio between P and N

MOSFET.

STTL-input 3 4

15. The maximum delay time can be specified.

'delay lOns

16. The character ":" is reserved for iJADE to build names for the flattened circuit from the

hierarchical one. Please avoid using the character in SPICE input file.

17. The OPTIONS card can be used to set the default width and length of the transistors.

but it must placed before any transistor definition.

.OPTIONS defw-4u defl-2u

A.2.1. Input Example

cmos register
temp 95

.subckt not 2 3 1
i/O I 0 I

mpl 3 2 1 1 modp 1=2u w=4u ad-Ibp as=16p ps=16u pd-16u
mnl 3 2 0 0 modn l=2u w-4u ad-bp as-16p ps=16u pd-l6u
.ends not

.subckt ror 2 3 4 1
"i,'o I i 0 i

mpl 5 2 1 1 modp l-2u w-4u ad-ld6r as-lbp ps-l6u pd-16u
mp2 4 3 5 1 modp l-2u w-4u ad-16p as-lbp ps=Ibu pd-lbu

97

mnl 4 2 0 0 mcln 1-2u w-4u ad-16p as-16p ps-16u pd-16u

mn2 4 3 0 0 modn 1-2u w-4u ad-16p as-16p ps-16u pd=16u
.ends nor

.subckt nand 2 3 4 1
*i/o i i o i
mpl 4 2 1 1 modp l-2u w-4u ad-16p as-16p ps-16u pd-16u
mp2 4 3 11 modp l=2u w-4u ad-16p as-16p ps-16u pd=16u

nmnl 4 2 5 0 modn l=2u w-4u ad16p as-16p ps-16u pd-16u
-an2 5 3 0 0 modn 1-2u w-4u ad-16p as-16p ps-16u pd=16u
.ends nand

.subckt nand3 2 3 4 5 1
*i/o i i i oi
mpl 5 2 1 1 modp l-2u w-4u ad=16p as-16p ps-16u pd-16u
mp2 5 3 11 modp l-2u w=4u ad=16p as=16p ps-16u pd-16u
mp3 5 4 1 1 modp l-2u w-4u ad-16p as-16p ps-16u pd-16u
mnI 5 2 6 0 modn 1-2u w-4u ad-16p as-16p ps-16u pd-16u
mn263 70 modn 1-2u w-4u ad-16p as-16p ps-16u pd-16u
mn3 7 4 0 0 modn 1=2u w-4u ad-16p as-16p ps-16u pd-16u
.ends nand3

.subckt latch 8 10 6 4 1
*i/o i i oo i
xl 8 51 not
x2 5 10 7 1 nand
x3 8 10 2 1 nand
x42641 nand
x6 7 46 1 nand
.ends latch

U .subckt between 11234561
•i/o i ii 0 o o i
x11 2 7 1 nand
x2 11381 nand
x3 7 841 nand
x4 3 10 1 not
x5 10 11 2 12 1 nand3
x6 12 6 1 not
x7 11 9 1 not
x8 9 2 5 1 nor
.ends between

*input 11 22 33 12 3 99
*output 6 12 17 15 16 90 91 92 93
c6 6 00. lpf
c12 12 0 O.lpf
c17 1700.1pf
c5 15 00.lpf
c16 1600.Ipf

xl II 234 56 1 between

At,

98

x2 4 99 90 7 1 latch
x3 5 99 91 8 1 latch

x4 22 7 8 9 10 12 1 between
x5 9 199 92 13 1 latch
x6 10 199 93 14 1 latch

x7 33 13 14 15 16 17 1 between
x8 99 199 1 not
x9 199 299 1 not

*clock 99
.print tran v(15) v(16) v(17)

vclock 99 0 pulse(0 5 Ins Ins Ins 14ns 30ns)
v2 2 0 pulse(O 5 Ins Ins Ins 20ns 50ns)
v3 3 0 pulse(O 5 1 Ins Ins Ins 20ns 50ns)
vii11 0dc5
v22 22 0 dc 5
v33 33 0 dc 5
vdc 1 0 dc 5
.tran 0.2ns 60ns

model modn nmos vto-1.25 uo-525 kappa-2.0e-2 nsub-i.77e-.17 theta-0.073
- vmax-l.74e+5 eta=0.96 tox=3.15e-8 xj=3.0e-7 tpg=1.0 js=l.Oe-7 cj=i.23e-3

pb-9.71062e-I rsh=17

.model modp pmos vto=-0.95 uo=298 kappa=2.0e-2 nsub=7.66e-15 theta=O.138
- vmax=2.92e-5 eta-l.4 tox-3.15e-8 xj=3.0e-7 tpg=-l.O js=l.Oe- 7 cj=2.66e-4
- pb-8.99323e-I rsh=56
.end

A.3. Output Format

The switch-level timing simulator and analyzer generate discrete waveform sequences for

the output nodes and critical paths described by blocks. The PRINT card is used as in SPICE.

but PRTYPE is ignored.

.PRINT PRT'PE V(1)

The general discrete voltage waveform is as follows:

In the output the default capacitance unit is femto farad, and the default time unit is pico

second.

I%
4!

-a . **,.*-;.,. ,>-,- . . - -. -, .- - ..-- , . -. '....,. . " "."".•"...-,- " " ''""" -""""-,- ,""'... -I.- ~ -.- ./€'-' ,4.

99

a A.M.. Output Example

whole:15 node name
(U 1 -I) signal waveform

wholel 6
(0Ou 1. 1185e-08)
(u 1 1.4842e-08)
(I u 3.7617e-08)
(u 0 3.8887e-08)

wholel 7
(0 U 8.512e-09)

* (u 0 9.347e-09)

delay-r 9950
delay-f 9522

critical-path-f
who lex 7: bet weenx6: bloc knot3. not0
wholex 7:betweenx5:blocknand3lI.nand35
w holex 7:betweenx4:blocknot3 .not0
wholex6:latchx4:blocknandlI.nand4
wholex6:latchx3:blocknand5
who lex4: bet weenx8: bloc knor5
wholex2:latchx4:blocknandS
who lex2:Ilatch x3: bloc knandl 1.nand4
wholexI1:betweenz3:blocknand5
wholex 1 :betweenx2: block nand 1l.nanc14

critical-path-r
wholex7:betweenx8:blocknor5
who lex5: latchx4: blocknand5
who Iex5:latchx3:blocknand 1 .nand4
wholex 4:betweenx3 :blocknandS
wholex4:betweenx 1 :blocknand 1 .nand4
who lex2: latch x4: bloc knand5

S wholex2:latchx3:blocknandI nand4
wholex 1: bet weenz3: blockriandI5
wholex 1: bet weenx2: bloc knand 1 .rand4

wholex 7:betweenx6:blocknot3.noE0
scale (2.0)
.vho lex 7: betweenx5 -bloc knand3 1. nand35
scale :(1.0)
wholex 7:betweenx4:blocknot3.not0
scale :(1 .0)
wholex7:betweenx8:blocknorS
scale :(5.3092296487425 79)
wholex5:lIatchx4:blocknand3
scale '12.36)

tat

100

wholex5:latchx3:blocknand 1.nand4
scale :(I 0)
w holex6: latchx4:blocknand I.nand4
scale :(1.274215115698219)
wholex6:latchx3:blocknand5
scale :(1.0)
wholex4:betweenx3:blocknand5
scale :(1.28)
wholex4:betweenx 1 :blocknand 1 .nand4
scale :(1 .0)
wholex4:betweenx8:blocknor5
scale :(1.698953487597625)
wholex2:latchx4:blocknand5
scale :(2.56)
whoiex2:latchx3:blocknandl .nand4
scale :(1.0)
wholex 1 :betweenx3:blocknand5
scale :(1.28)
w holex 1 :betweenx2:blocknand 1.nanc4
scale :(1.0)

"hold time not long enough"

set-up time not long enough"

"clock pulse width not long enough"

list: (75413 1470 64)
svmbol: (3098 126 25)
string: (61 62 1)
fixnum: (621 11 128)
flonum: (451 21 64)
total width- 0.072
total time= 72 seconds

A.A. Delay File

*table-r (slew-rate t I t2) of RC circuit (unit: pico seconds)

R: l0k. C: lOff

((6 28 138) (30 38 140) (60 51 144) (120 65 175) (180 74 214) (300 83 316)

(600 95 605) 1200 100 1200) (1800 100 1800) (2400 100 2400) (3000 100 3000)

(3600 100 3600) (4200 100 4200) (4800 100 4800) (5400 100 5400) (6000 100 6000,

720oo 100 7200) (9000 i00 900) (10800 100 10800) (12000 100 12000)

'15000 100. 15000))

% % . j U * ~ t . . F .

101

*tablel.1 :type I primitive N-drive

((6 130 256) (30 152 267) (60 166 269) (120 215 272) (180 259 274) (300 330 282)

(600 529 345) (1200 843 529) (1800 1131 679) (2400 1357 926) (3000 1636 1012)

(3600 1906 1093) (4200 2189 1206) (4800 2393 1471) (5400 2636 1554)
(6000 2947 1596) (7200 3466 1844) (9000 4109 2512) (10800 4936 2605)

Th(12000 5404 2844) (15000 6781 3170))

*tablel .2 :type 1 primitive P-drive

((6 178 375) (30 205 397) (60 220 400) (120 255 400) (180 296 400) (300 382 409)

(600 532 487) (1200 866 636) (1800 1172 744) (2400 1469 837) (3000 1738 968)

(3600 2021 1068) (4200 2324 1185) (4800 2601 1328) (5400 2831 1449)

(6000 3111 1500) (7200 3691 1679) (9000 4304 2265) (10800 5275 2328)

(12000 5817 2533) (15000 7147 2829))

*table2.1 :type 2 primitive pass-I

((6 121 728) (30 143 738) (60 155 738) (120 189 740) (180 211 742) (300 249 773)

(600 301 944) (1200 338 1428) (1800 353 1990) (2400 364 2575) (3000 368 3164)

a(3600 369 3752) (4200 369 4342) (4800 372 4932) (5400 372 5528) (6000 372 6122)

(7200 372 7316) (9000 374 9108) (10800 374 10900) (12000 374 12103)

(15000 374 15100))

*table2.2 :type 2 primitive pass-0

((6 87 498) (30 113 498) (60 133 498) (120 173 498) (180 210 508) (300 249 576)

(600 346 720) (1200 405 1233) (1800 431 1822) (2400 446 2400) (3000 454 2996)

(3600 460 3583) (4200 463 4178) (4800 466 4772) (5400 468 5366) (6000 468 5958)

(7200 470 7158) (9000 470 8958) (10800 471 10734) (12000 471 11932)

(15000 472 14928))

*table3.1 :type 3 primitive pass-I

((6 14 555) (30 45 555) (60 71 559) (120 120 564) (180 164 566) (300 226 589)

102

(600 370 691) (1200 563 963) (1800 700 1138) (2400 732 1418) (3000 837 1577)

(3600 863 1763) (4200 937 1854) (4800 947 2129) (5400 959 2263) (6000 969 2433)

(7200 902 2793) (9000 878 3396) (10800 839 3616) (12000 785 4016)

(15000 650 4424))

*table3.2 : type 3 primitive pass-0

((6 25 370) (30 82 370) (60 100 371) (120 149 380) (180 190 383) (300 245 407)

(600 380 527) (1200580 789) (1800 735 997) (2400 830 1288) (3000 955 1439)

(3600 1051 1587) (4200 1151 1714) (4800 1243 1939) (5400 1291 2080)

(6000 1376 2231) (7200 1508 2480) (9000 1635 3016) (10800 1709 3382)

(12000 1802 3555) (15000 2004 4049))

*slew-rate (unit: pico seconds)

(6 30 60 120 180 300 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 7200 9000

10800 12000 15000)

(slew-rate, equivalent-resistance) (unit: pico second. kilo ohm)

,r-eq 1.1 • type I pass transistor equivalent R when conducting 1

((6 15) (30 18) (60 19) (120 20) (180 22) (300 25) (600 32) (1200 49) (1800 64)

(2400 80) (3000 93) (3600 106) (4200 119) (4800 134) (5400 147) (6000 159)

(7200 183) (9000 225) (10800 259) (12000 281) (15000 339))

*r-eql.2 : type 1 pass transistor equivalent R when conducting 0

((6 23) (30 25) (60 26) (120 27) (180 28) (300 32) (600 39) (1200 54) (1800 69)

(2400 83) (300 98) (3600 110) (4200 123) (4800 139) (5400 152) (6000 162)

(7200 187) (9000 258) (10800 263) (12000 286) (15000 342))

*r-eq2.1 type 2 pass transistor equivalent R when conducting I

16

Or-eq2.2 type 2 pass transistor equivalent R when conducting 0

16

k .. ,.

103

*r-eq3.1 : type 3 pass transistor equivalent R when conducting 1

((6 17) (30 19) (60 20) (120 22) (180 23) (300 26) (600 34) (1200 49) (1800 59)

(2400 70) (3000 78) (3600 85) (4200 91) (4800 100) (5400 105) (6000 111)

p (7200 121) (9000 140) (10800 146) (12000 157) (15000 166))

Sr-eq3.2 :type 3 pass transistor equivalent R when conducting 0

((6 12) (30 14) (60 15) (120 16) (180 18) (300 20) (600 29) (1200 44) (1800 56)

(2400 69) (3000 78) (3600 86) (4200 93) (4800 104) (5400 110) (6000 118)

(7200 130) (9000 152) (10800 166) (12000 175) (15000 198))

A.5. Technology File

ad-coef ::ad- l'w + ad-coef

as-coef as- l'w + as-coef

pd-coef ::pd- 2*w +- pd-coef

ps-coef ::ps- 2*w + ps-coef

max-load-c :; the maximum output loading capacitance. to check if buffer needed

IU) :: upper threshold voltage (-4 volt)

t,::lower threshold voltage (-1 volt)

t 1T7L ::TTL threshold voltage

C -i -; Primitive cell I equivalent loading capacitance

C:i 2Primitive cell 2 equivalent loading capacitance

RIC RIC time constant for the RIC delay time table

A.5.1. Physical, Materials, and Default Values

(1) Intrinsic carrier concentration of silicon: n,2=1.375e 24/rmb

104

(2) Dielectric constant of vacuum: %=8.8S5e -14 farad /cm

(3) Dielectric constant of silicon: e, =11.7%

(4) Dielectric constant of SiC 2 :e =3.9E0

(5) Gate oxide capacitance per unit area: C,, -

to,

(6) Body-effect coefficient: -y=- 2q E, A

(7) built-in junction potential: 0,, =2 VT In- =2 VT InA

(8)~~n ne V _ q ,

(8) Junction capacitance: CJP =(q -V), _ CJ, =..q e. "

(9) Sidewall capacitance: CJS IVP =CJ, CJS It." =CJX. V

(10) Cbp =C J, .4Dp +CJS Wp PDp C.6. =CJ, .4D, + CJS I', PD,

)K, b + 5)- (+ 5
2. p -

(12) CJdP =CZ LDWP C)"i. = C., LDW

(13) Lumped device capacitance: Cje, =K1, Clbp +K:q, CjM +Cj4 p +Cid,

(14) Gate capacitance: C, =C,, L W

[I

105

REFERENCES

(Agr 82] V. Agrawal. *Synchronous Path Analysis in MOS Circuit Simulator.0 IEEE 19th

Design Automation Conference, pp.629-635. June 1982.

[Aho 74] A. Aho. J. Hopcroft. and J. Ullman. The Design and Analysis of Computer Algorithms,

Addison-Wesley Publishing Co.. 1974.

[Al-H 85] H. Al-Hussein. "Path-Delay Computation Algorithms for VLSI Systems." VLSI

Design. pp.86-91. February 1985.

0[Ann 861 M. Annaratone. Digital CMOS Circuit Design, Kluwer Academic Publishers. 1986.

i 1. 70[Bak 86] H. Bakoglu. J. Walker. and J. Meindl. *A Symmetric Clock-Distribution Tree and

Optimized High-Speed Interconnections for Reduced clock skew in ULSI and WSI Circuits."

IEEE ICCAD'86, pp.118-122. November 1986.

[Ben 82] L. Bening. T. Lane. and J. Smith, "Developments in Logic Network Path Delay

Analysis." IEEE 19th Design Automation Conference. pp.605-615. June 1982.

(Bit 86] W. Birmingham. R. Joobbani. and J. Kim. *Knowledge-Based Expert Systems and Their

Application.' IEEE 23rd Design Automation Conference, pp.5 3 1-539. June 1986.

[Bry 81] R. Bryant. "MOSSIM: A Switch-Level Simulator for MOS LSI.' IEEE 18th Design

Automation Conference. pp. 786-790. June 1981.

[Bra 81] R. Brayton. G. Hachtel. and A. Sangiovanni-Vincentelli. 'A Survey of Optimization

Techniques for Integrated-Circuit Design.' Proceedings of the IEEE. Vol. 69. No. 10. pp.1334-

1362. October 1981.

b

106

{Buc 84] B. Buchanan. and E. Shortliffe. Rule-Based Expert Systems. Addison-Wesley Publishing

Co.. 1984.

(Cha 85] E. Chan. "Development of a Timing Analysis Program for Multiple Clocked Network."

IEEE 22nd Design Automation Conference, pp.816-819. June 1985.

[Coh 85] W. Cohen. K. Bartlett. and A. Geus. "Impact of Metarules in a Rule Based Expert Sy-

tem for Gate Level Optimization." IEEE Proceedings of ISCAS'85. pp.8 7 3-876. May 1985.

[Fis 85] J. Fishburn. and A. Dunlop. "TILOS: A Posynomial Programming Approach to Transis-

tor Sizing." IEEE ICCAD'85, pp.326-328. November 1985.

[Gla 77] A. Glaser,- and G. Subak-Sharpe. Integrated Circuit Engineering, Addison-Wesley

Publishing Co.. 1977.

[Gla 84] L. Glasser. and L. Hoyte. "Delay and Power Optimization in VLSI Circuits." IEEE 21st

Design Automation Conference. pp.5 2 9 -5 3 5 . June 1984.

[Gla 85] L. Glasser. and D. Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-

Wesley Publishing Co.. 1985.

[Hit 821 R. Hitchcock. Sr.. "Timing Verification and the Timing Analysis Program." IEEE lth

Design Automation Conference. pp.594-60 4 . June 1982.

-'" [Hod 831 D. Hodges. and H. Jackson. Analysis and Design of Digital Integrated Circuits.

McGraw-Hill Book Co.. 1983.

[Hwa 56] S. Hwang. Y. Kim. and A. Newton. "An Accurate Delay Modeling Technique for

Switch-Level Timing Verification." IEEE 23rd Design Automation Conference. pp.22 7 -233. June

1986.

107

[Jou 831 N. Jouppi. 'Timing Analysis for nMOS VLSI.* IEEE 20th Design Automation Confer-

ence. pp.411-418 , June 1983.

[Kan 81] S. Kang, "A Design of CMOS Polycells for LSI Circuits.* "IEEE Trans. Circuits and

3 Systems,* Vol. CAS-28. No. 8. pp.8 3 8 - 8 4 3 . August 1981.

I[Kan 86] S. Kang. *Accurate Simulation of Power Dissipation in VLSI Circuits.' IEEE J. of

Solid-State Circuits. Vol. SC-21. No. 5. pp.8 8 9 -891. October 1986.

[Kan 83] A. Kanuma. "CMOS Circuit Optimization.' Solid State Electronics, vol. 26. No. 1.

* pp.47-58. January 1983.

[Kao 85] W. Kao. N. Fathi. and C. Lee. 'Algorithms for Automatic Transistor Sizing in CMOS

Digital Circuits.' IEEE 22nd Design Automation Conference. pp.7 81- 7 8 4 . June 1985.

[Kow 851 T. Kowalski. and D. Thomas. "The VLSI Design Automation Assistant: What's in a

* Knowledge Base.* IEEE 22nd Design Automation Conference. pp.252-258. June 1985.

[Lai 87a] F. Lai. V. Rao. and T. Trick. 'JADE: A Hierarchical Switch-Level Timing Simulator.'

IEEE Proceedings of ISCAS'87. pp.592-595. May 1987.

[Lai 87b] F. Lai. S. Kang. T. Trick. and V. Rao. "iJADE: A Rule-based Hierarchical VLSI CMOS

Circuit Optimizer.' IEEE Proceedings of ICCD'8-. October 1987.

[Lai 87c] F Lai. S. Kang. and T. Trick. 'A Timing Error Corrector for VLSI Synchronous Path

Circuit." IEEE Proceedings of ICC.4D'87. November 1987.

[Lee 84] C Lee. and H. Soukup. 'An Algorithm for CMOS Timing and Area Optimization.'

IEEEI of Solid-State Circuits. Vol. SC-19. No. 5. pp.781- 7 87. October 1984.

[Lob 841 C. Lob. 'RLBBIC. A Rule-Based Expert System for VLSI Integrated Circuit Critique.'

108

Mer. No. L'CB/ERL M84 /80. December 1984.

[DeM 85] H. J. De Man. 1. Bolsens. E. vanden Meersch. and J. van Cleynenbreugel. "DIALOG:

An Expert System for MOS VLSI Design.* IEEE Trans. Computer-Aided Design. Vol. CAD-4.

S. pp.303-311. July 1985.

[Mat 85] M. Matson. "Optimization of Digital MOS VLSI Circuits." Chapel Hill Conference on

Very Large Scale Iregration, pp. 109-12 6 . 1985.

[Mea 80] C. M1ead. and L. Conway. Introduction to VLSI Systems. Addison-Wesley Publishing

Co.. 1980.

[DeM 86] G. De .Micheli. "Performance-Oriented Synthesis in the Yorktown Silicon Compiler."

IEEE ICCAD'86, pp. 138 -141. November 1986.

[.Mur 791 S. Muroga. Logic Design and Switching Theory. John Wiley & Sons Publishing Co..

•." 1979.

[Mur 82] S. Muroga. VLSI System Design. John Wiley & Sons Publishing Co.. 1982.

[Nag 75] L. Nagel. "SPICE2: A Computer Program for Simulate Semiconductor Circuits." ERL

,Iemo ERL-M520. University of California. Berkeley. CA. May 1975.

[Nye 81] W. Nye. E. Polak. A. Sangiovanni-Vincentelli. and A. Tits. "DELIGHT: An

A Optimization-Based Computer-Aided Design System.* IEEE Proceedings of ISCAS'81. pp.8 51-

, 8 55. April 1981.

[Ous 851 J. Ousterhout. "A Switch-Level Timing Verifier for Digital MOS VLSI." IEEE Trans

%_ Complter_.4ided Design. Vol. CAD-4. pp.336-349. July 1985.

* [Pre 77] F. Preparata. and R. Yeh. Introduction to Discrete Structure for Computer and Engineer-

I

109

ing. Prentice Hall. 1977.

{Rao 851 V. Rao. "Switch-Level Timing Simulation of MOS VLSI Circuits.' Report R-1032.

UILU-EYG 85-2207. University of Illinois. Urbana-Champain. March 1985.

[Rei 77] E. Reingold. J. Nievergelt. and N. Deo. Combinatorial Algorithms: Theory and Practice,

'9 Prentice Hall. 1977.

[Rue 77] A. Ruehli. P. Wolff. Sr.. and G. Goerzel. "Analytical Power/Timing Optimization Tech-

niques for Digital Circuits." IEEE 14th Design Automation Conference, pp.403-410. June 1977.

(Sho 82] M. Shoji. "Electrical Design of BELLMAC-32A Microprocessor." IEEE ICCC'82.

pp.11 2 -115. 1982.

[Sho 85] M. Shoji. "FET Scaling in Domino CMIOS Gates.* IEEE 1 of Solid-State Circuits, Vol.

SC-20. No. 5. pp. l06 7-1071. October 1985

.Z. [Szy 861 T. Szv manski. "LEADOUT: A Static Timing Analyzer for MOS Circuits." IEEE

b ICCAD'36. pp.130-133. November 1986.

[Tam 83] E. Tamura. K. Ogawa. and T. Nakano. "Path Delay Analysis for Hierarchical Building

Block Layout System." IEEE 20th Design Automation Conference. pp.403-410. June 1983.

[Ter 831 C. Terman. "RSIM - A Logic-Level Timing Simulator." IEEE ICCD'83. pp.43 7 -440,

November 1983.

[Wes 85] N, Weste. and K. Eshraghian. Principles of CMOS VLSI Design a System Perspective,

Addison-Wesley Publishing Co.. 1985.

[Wit 84] i. White. and A. Sangiovanni-Vincentelli "RELAX2.1: A Waveform Relaxation Based

Circuit Simulation Program." Proceedings IEEE Custom Integrated Circuits Conference.

110

pp.232-236. May 1984.

[Wil 851 A. Wilkinson. "MIND: An Inside Look at an Expert System for Electronic Diagnosis."

IEEE Design and Test. pp.69-77. August 1985.

(Win 81] P. Winston. and B. Horn. LISP. Addison-Wesley Publishing Co.. 1981.

[Yan 80] P. Yang. I. Hajj. and T. Trick. "SLATE: A Circuit Simulation Program with Latency

Exploitation and Node Tearing." IEEE Proceedings of ICCC'80, pp. 3 5 3 - 35 5 . October 1980.

[Zip 83] R. Zippel. "An Expert System for VLSI Design." VLSI memo No. 83-134. MIT. February

1983.

Si.

"5. 1
I

!--

V ITA

JJ.

Feipei Lai was born in Changhua. Taiwan. Republic of China on May 17. 1958. He

received a B.S. degree in Electrical Engineering from National Taiwan University. Taipei. R. 0.

C. in June 1980. He came to the University of Illinois in January 1983 and received his M.S.

degree in Computer Science in May 1984. From January 1983 to May 1984 he worked as a

research assistant at the Digital Computing Laboratory. Urbana. From May 1984 to May 1987

he worked as a research assistant at the Coordinate Science Laboratory and a teaching assistant

with the Department of Computer Science at the University of Illinois. He has accepted a joint

position as an Associate Professor in Department of Electrical Engineering and Department of

.. Computer Science at National Taiwan University. His research interests include the area of

simulation, optimization of VLSI circuits, and computer-aided design algorithms.

Id

-A

' A

b~j

, p

-S-,.-.

"'."

-
.W " ..

g-
' -. I

'p ES " "4 ,,, ' ." ;";.., , , ',' ,G G .. ,' ",,- . .. ,'/% 'e',. ," e G " ,' _ ,";""e. ,_ ''' I , '"-4

